TY - THES A1 - Gram, Maximilian T1 - Neue Methoden der Spin-Lock-basierten Magnetresonanztomographie: Myokardiale T\(_{1ρ}\)-Quantifizierung und Detektion magnetischer Oszillationen im nT-Bereich T1 - New methods of spin-lock-based magnetic resonance imaging: myocardial T\(_{1ρ}\) quantification and detection of magnetic oscillations in the nT range N2 - Das Ziel der vorliegenden Arbeit war die Entwicklung neuer, robuster Methoden der Spin-Lock-basierten MRT. Im Fokus stand hierbei vorerst die T1ρ-Quantifizierung des Myokards im Kleintiermodell. Neben der T1ρ-Bildgebung bietet Spin-Locking jedoch zusätzlich die Möglichkeit der Detektion ultra-schwacher, magnetischer Feldoszillationen. Die Projekte und Ergebnisse, die im Rahmen dieses Promotionsvorhabens umgesetzt und erzielt wurden, decken daher ein breites Spektrum der Spin-lock basierten Bildgebung ab und können grob in drei Bereiche unterteilt werden. Im ersten Schritt wurde die grundlegende Pulssequenz des Spin-Lock-Experimentes durch die Einführung des balancierten Spin-Locks optimiert. Der zweite Schritt war die Entwicklung einer kardialen MRT-Sequenz für die robuste Quantifizierung der myokardialen T1ρ-Relaxationszeit an einem präklinischen Hochfeld-MRT. Im letzten Schritt wurden Konzepte der robusten T1ρ-Bildgebung auf die Methodik der Felddetektion mittels Spin-Locking übertragen. Hierbei wurden erste, erfolgreiche Messungen magnetischer Oszillationen im nT-Bereich, welche lokal im untersuchten Gewebe auftreten, an einem klinischen MRT-System im menschlichen Gehirn realisiert. N2 - The main goal of the present work was to develop new, robust methods of spin-lock-based MRI. The initial focus was on T1ρ quantification of the myocardium in small animal models. However, in addition to T1ρ imaging, spin-locking offers the possibility of detecting ultra-weak magnetic field oscillations. The projects and results realized and obtained in this PhD project therefore cover a broad spectrum of spin-lock based imaging and can be roughly divided into three areas. The first step was to optimize the basic pulse sequence of the spin-lock experiment by introducing balanced spin-locking. The second step was to develop a cardiac MRI sequence for robust quantification of the myocardial T1ρ relaxation time on a preclinical high-field MRI scanner. In the final step, concepts of robust T1ρ imaging were adapted to spin-lock based magnetic field detection. First successful measurements of magnetic field oscillations in the nT range, which occur locally inside the tissue under investigation, were realized on a clinical MRI system in the human brain. KW - Kernspintomografie KW - Magnetresonanztomographie KW - Kernspinresonanz KW - Spin-Lock KW - T1ρ KW - T1rho KW - Kardio-MRT KW - Rotary Excitation KW - Myokardiale T1ρ-Quantifizierung KW - Felddetektion KW - funktionelle MRT Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322552 ER - TY - THES A1 - Lykowsky, Gunthard T1 - Hardware- und Methodenentwicklung für die 23Na- und 19F-Magnetresonanztomographie T1 - Hardware and method development for 23Na and 19F magnetic resonance imaging N2 - Neben dem Wasserstoffkern 1H können auch andere Kerne für die Magnetresonanztomographie (MRT) genutzt werden. Diese sogenannten X-Kerne können komplementäre Informationen zur klassischen 1H-MRT liefern und so das Anwendungsspektrum der MRT erweitern. Die Herausforderung bei der X-Kern-Bildgebung liegt zum großen Teil in dem intrinsisch niedrigen Signal-zu-Rauschen-Verhältnis (SNR), aber auch in den spezifischen Kerneigenschaften. Um X-Kern-Bildgebung optimal betreiben zu können, müssen daher Sende-/Empfangsspulen, Messsequenzen und -methoden auf den jeweiligen Kern angepasst werden. Im Fokus dieser Dissertation standen die beiden Kerne Natrium (23Na) und Fluor (19F), für die optimierte Hardware und Methoden entwickelt wurden. 23Na spielte in dieser Arbeit vor allem wegen seiner Funktion als Biomarker für Arthrose, einer degenerativen Gelenkserkrankung, eine Rolle. Hierbei ist insbesondere die quantitative Natriumbildgebung von Bedeutung, da sich mit ihr der Knorpelzustand auch im Zeitverlauf charakterisieren lässt. Für die quantitative Messung mittels MRT ist die Kenntnis des B1-Feldes der eingesetzten MR-Spule entscheidend, denn dieses kann die relative Signalintensität stark beeinflussen und so zu Fehlern in der Quantifizierung führen. Daher wurde eine Methode zur Bestimmung des B1-Feldes untersucht und entwickelt. Dies stellte aufgrund des niedrigen SNR und der kurzen sowie biexponentiellen T2-Relaxationszeit von 23Na eine Herausforderung dar. Mit einer retrospektiven Korrekturmethode konnte eine genaue und zugleich schnelle Korrekturmethode gefunden werden. Für die 1H- und 23Na-Bildgebung am menschlichen Knieknorpel wurden zwei praxistaugliche, doppelresonante Quadratur-Birdcage-Resonatoren entwickelt, gebaut und charakterisiert. Der Vergleich der beiden Spulen bezüglich Sensitivität und Feldhomogenität zeigte, dass der Vier-Ring-Birdcage dem Alternating-Rungs-Birdcage für den vorliegenden Anwendungsfall überlegen ist. Die in vivo erzielte Auflösung und das SNR der 23Na-Bilder waren bei beiden Spulen für die Quantifizierung der Natriumkonzentration im Knieknorpel ausreichend. Hochauflösende anatomische 1H-Bilder konnten ohne Mittelungen aufgenommen werden. In einer umfangreichen Multiparameter-MR-Tierstudie an Ziegen wurde der Verlauf einer chirurgisch induzierten Arthrose mittels 23Na- und 1H-Bildgebungsmethoden untersucht. Hierbei kamen dGEMRIC, T1ρ-Messung und quantitative Natrium-MRT zum Einsatz. Trotz des im Vergleich zum Menschen dünneren Ziegenknorpels, der niedrigen Feldstärke von 1,5 T und den auftretenden Ödemen konnten erstmals diese MR-Parameter über den Studienverlauf hinweg an den gleichen Versuchstieren und zu den gleichen Zeitpunkten ermittelt werden. Die Ergebnisse wurden verglichen und die ermittelten Korrelationen entsprechen den zugrundeliegenden biochemischen Mechanismen. Die im Rahmen dieser Studie entwickelten Methoden, Bildgebungsprotokolle und Auswertungen lassen sich auf zukünftige Humanstudien übertragen. Die mit klinischen Bildgebungssequenzen nicht zugängliche kurze Komponente der biexponentiellen T2*-Relaxationszeit von 23Na konnte mittels einer radialen Ultra-Short-Echo-Time-Sequenz bestimmt werden. Hierzu wurde eine Multi-Echo-Sequenz mit einem quasizufälligen Abtastschema kombiniert. Hierdurch gelang es, die kurze und lange T2*-Komponente des patellaren Knorpels in vivo zu bestimmen. 19F wird in der MRT wegen seiner hohen relativen Sensitivität und seines minimalen, körpereigenen Hintergrundsignals als Marker eingesetzt. Zur Detektion der niedrigen in-vivo-Konzentrationen der Markersubstanzen werden hochsensitive Messspulen benötigt. Für die 19F-Bildgebung an Mäusen wurde eine Birdcage-Volumenspule entwickelt, die sowohl für 19F als auch 1H in Quadratur betrieben werden kann, ohne Kompromisse in Sensitivität oder Feldhomogenität gegenüber einer monoresonanten Spule eingehen zu müssen. Dies gelang durch eine verschiebbare Hochfrequenzabschirmung, mit der die Resonanzfrequenz des Birdcage verändert werden kann. Es konnte weiterhin gezeigt werden, dass die Feldverteilungen bei 1H und 19F im Rahmen der Messgenauigkeit identisch sind und so der 1H-Kanal für die Pulskalibrierung und die Erstellung von B1-Karten für die 19F-Bildgebung genutzt werden kann. Hierdurch kann die Messzeit deutlich reduziert werden. Ein grundsätzliches Problemfeld stellt die Korrelation unterschiedlicher Bildgebungsmodalitäten dar. In der MRT betrifft das häufig die Korrelation von in-/ex-vivo-MR-Daten und den dazugehörigen Lichtbildaufnahmen an histologischen Schnitten. In dieser Arbeit wurde erstmals erfolgreich eine 1H- und 19F-MR-Messung an einem histologischen Schnitt vorgenommen. Durch die Verwendung einer optimierten 1H/19F-Oberflächenspule konnte die 19F-Signalverteilung in einer dünnen Tumorscheibe in akzeptabler Messzeit aufgenommen werden. Da der gleiche Schnitt sowohl mit Fluoreszenzmikroskopie als auch mit MRT gemessen wurde, konnten Histologie und MR-Ergebnisse exakt korreliert werden. Zusammenfassend konnten in dieser Arbeit durch Hardware- und Methodenentwicklung zahlreiche neue Aspekte der 19F- und 23Na-MRT beleuchtet werden und so zukünftige Anwendungsfelder erschlossen werden. N2 - In addition to the hydrogen nucleus 1H, other nuclei can also be used for magnetic resonance imaging (MRI). These so-called X-nuclei can provide complementary information on classical 1H MRI and thus expand the range of applications of MRI. The challenge in X-nucleus imaging is largely due to the intrinsically low signal-to-noise ratio (SNR), but also to the specific properties of the nucleus. In order to optimally perform X-nuclei imaging, transmit/receive coils, imaging sequences and methods must be adapted to the respective nucleus. The two nuclei sodium (23Na) and fluorine (19F) were in the focus of this dissertation and thus optimized hardware and methods were developed for these nuclei. 23Na played a major role in this work, mainly because of its function as a biomarker of osteoarthritis, a degenerative joint disease. In particular, the quantitative sodium imaging is of importance, as it can characterize the cartilage state over time. For quantitative measurements by MRI, the knowledge of the B1 field of the MR coil used is crucial, because this can strongly influence the signal intensity and thus lead to errors in the quantification. Therefore, a method for the determination of the B1 field was developed. This presented a challenge due to the low SNR and the short and biexponential T2 relaxation time of 23Na. Using a retrospective correction method, a precise and at the same time rapid correction method could be found. Two practicable double resonant quadrature birdcage resonators have been developed, constructed and characterized for 1H/23Na imaging on human knee cartilage. The comparison of the two coils in terms of sensitivity and field homogeneity showed that the four-ring birdcage is superior to the alternating-rungs birdcage for the present application. The in vivo resolution and SNR of the 23Na images were sufficient for both coils to quantify the sodium concentration in the knee cartilage. High-resolution 1H anatomical images could be acquired without averaging. In a large multiparameter MRI animal study on goats, the progression of surgically induced osteoarthritis was studied using 23Na and 1H imaging techniques. DGEMRIC, T1ρ and quantitative sodium MRI were used. Despite thinner goat cartilage compared to humans, low field strength of 1.5 T and the occurring edema, it was possible for the first time to determine these MR parameters over the course of the study on the same experimental animals and at the same time points. The correlations of the MR parameters correspond to the underlying biochemical mechanisms. The methods, imaging protocols and evaluations developed in this study can be applied to future human studies. The short component of the biexponential T2* relaxation time of 23Na, which is not accessible with clinical imaging sequences, could be determined by means of a radial ultra-short echo time sequence. For this purpose, a multi-echo sequence was combined with a quasi-random sampling scheme. This enabled the determination of the short and long T2* component of patellar cartilage in vivo. 19F is used as a marker in MRI because of its high relative sensitivity and minimal body’s own background signal. To detect the low in vivo concentrations of the marker substances, highly sensitive measuring coils are required. For 19F imaging of mice, a birdcage volume coil was developed that can be operated in quadrature for both 19F and 1H without compromising sensitivity or field homogeneity compared to monoresonant coils. This is due to a slidable RF shield, which is used to change the resonance frequency of the birdcage. It has also been shown that field distributions at 1H and 19F are identical allowing the 1H channel to be used for pulse calibration and B1 mapping for 19F imaging. This can significantly reduce the acquisition time. A fundamental challenge is the correlation of different imaging modalities. In MRI, this often affects the correlation of in and ex vivo MR data and the associated images of histological sections. In this work, 1H and 19F MR measurements of a histological section were successfully performed for the first time. By using an optimized 1H/19F surface coil, the 19F signal distribution in a thin tumor slice was acquired within an acceptable acquisition time. Since the same section was measured by fluorescence microscopy as well as by MRI, histology and MR results could be correlated exactly. In summary, hardware and method development in this work has highlighted numerous new aspects of 19F and 23Na MRI, opening up future fields of application. KW - Kernspintomografie KW - Fluor-19 KW - Natrium-23 KW - 19F-MRT KW - 23Na-MRT Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188710 ER - TY - THES A1 - Gutjahr, Fabian Tobias T1 - Neue Methoden der physiologischen Magnet-Resonanz-Tomographie: Modellbasierte T1-Messungen und Darstellung von chemischem Austausch mit positivem Kontrast T1 - Novell Methods for Physiological MRI: Model based T1-Quantification and Positive Contrast Chemical Exchange Measurements N2 - Ziel dieser Arbeit war es, neue quantitative Messmethoden am Kleintier, insbesondere die Perfusionsmessung am Mäuseherz, zu etablieren. Hierfür wurde eine retrospektiv getriggerte T1-Messmethode entwickelt. Da bei retrospektiven Methoden keine vollständige Abtastung garantiert werden kann, wurde ein Verfahren gefunden, das mit Hilfe von Vorwissen über das gemessene Modell sehr effizient die fehlenden Daten interpolieren kann. Mit Hilfe dieser Technik werden dynamische T1-Messungen mit hoher räumlicher und zeitlicher Auflösung möglich. Dank der hohen Genauigkeit der T1-Messmethode lässt sich diese für die nichtinvasive Perfusionsmessung am Mäuseherz mittels der FAIR-ASL-Technik nutzen. Da auf Grund der retrospektiven Triggerung Daten an allen Positionen im Herzzyklus akquiriert werden, konnten T1- und Perfusionskarten nach der Messung zu beliebigen Punkten im Herzzyklus rekonstruiert werden. Es bietet sich an, Techniken, die für die myokardiale Perfusion angewandt werden, auch für die Nierenperfusionsmessung zu verwenden, da die Niere in ihrer Rinde (Cortex) eine ähnlich hohe Perfusion aufweist wie das Myokard. Gleichzeitig führen Nierenerkrankungen oftmals zu schlechter Kontrastmittelverträglichkeit, da diese bei Niereninsuffizienz u.U. zu lange im Körper verweilen und die Niere weiter schädigen. Auch deshalb sind die kontrastmittelfreien Spin-Labeling-Methoden hier interessant. Die FAIR-ASL-Technik ist jedoch an Mäusen in koronaler Ansicht für die Niere schlecht geeignet auf Grund des geringen Unterschieds zwischen dem markierten und dem Vergleichsexperiment. Als Lösung für dieses Problem wurde vorgeschlagen, die Markierungsschicht senkrecht zur Messschicht zu orientieren. Hiermit konnte die Sensitivität gesteigert und gleichzeitig die Variabilität der Methode deutlich verringert werden. Mit Hilfe von kontrastmittelgestützten Messungen konnten auch das regionale Blutvolumen und das Extrazellularvolumen bestimmt werden. In den letzten Jahren hat das Interesse an Extrazellularvolumenmessungen zugenommen, da das Extrazellularvolumen stellvertretend für diffuse Fibrose gemessen werden kann, die bis dahin nichtinvasiven Methoden nicht zugänglich war. Die bisher in der Literatur verwendeten Quantifizierungsmethoden missachten den Einfluss, den das Hämatokrit auf den ECV-Wert hat. Es wurde eine neue Korrektur vorgeschlagen, die allerdings zusätzlich zur ECV-Messung auch eine RBV-Messung benötigt. Durch gleichzeitige Messung beider Volumenanteile konnte auch erstmals das Extrazellulare-Extravaskuläre-Volumen bestimmt werden. Eine gänzlich andere kontrastmittelbasierte Methode in der MRT ist die Messung des chemischen Austauschs. Hierbei wirkt das Kontrastmittel nicht direkt beschleunigend auf die Relaxation, sondern der Effekt des Kontrastmittels wird gezielt durch HF-Pulse an- und ausgeschaltet. Durch den chemischen Austausch kann die Auswirkung der HF-Pulse akkumuliert werden. Bislang wurde bei solchen Messungen ein negativer Kontrast erzeugt, der ohne zusätzliche Vergleichsmessungen schwer detektierbar war. Im letzten Teil dieser Arbeit konnte eine neue Methode zur Messung des chemischen Austauschs gezeigt werden, die entgegen der aus der Literatur bekannten Methoden nicht Sättigung, sondern Anregung überträgt. Diese Änderung erlaubt es, einen echten positiven chemischen Austausch-Kontrast zu erzeugen, der nicht zwingend ein Vergleichsbild benötigt. Gleichzeitig ermöglicht die Technik, dadurch dass Anregung übertragen wird, die Phase der Anregung zu kontrollieren und nutzen. Eine mögliche Anwendung ist die Unterscheidung verschiedener Substanzen in einer Messung. In der Summe wurden im Rahmen dieser Arbeit verschiedene robuste Methoden eta- bliert, die die Möglichkeiten der quantitativen physiologischen MRT erweitern. N2 - The objective of this dissertation was to develop new methods for physiological magnetic resonance imaging. A new retrospectively triggered T1-method was developed. Due to the retrospectivity, full sampling of k-space can not be warranted. Therefore a model- based interpolation method was developed to reconstruct missing data efficiently. Using this technique, dynamic T1-measurements with high temporal and spatial resolution could be acquired. Due to the high precision of the developed T1-method, perfusion could be quantified using Arterial Spin Labeling. In comparison to the method established previously in our laboratory, the resolution could be doubled. Retrospective triggering enables reconstruc- tion of parameter maps on arbitrary positions in the heart cycle, as data are acquired continuously over several heart cycles. The perfusion measurement benefits from recon- struction on the end systole, as partial volume effects are decreased, due to the increased myocardial wall thickness. This serves as an effective increase in resolution. Furthermore, the data distributed over the whole heart cycle could be used to accelerate and stabilize the measurement. Cardiac and renal diseases can be directly related, as deficiency in one of the organs affects the other one. Additionally several diseases like hypertension or diabetes affect both organs. Moreover, kidneys are highly perfused, similar to the myocardium. Renal insufficiency can also lead to contrast agent intolerance, as clearance rates can be redu- ced. Therefore the FAIR-ASL technique lends itself to kidney perfusion measurements. It can, however, be problematic in small animals in coronal view, as the control-experiment inadvertently labels much of the same tissue and blood, as the labeling experiment. A modified FAIR-ASL measurement could be shown to increase sensitivity and reduce in- ter-measurement-variability by repositioning the inversion slice of the control experiment orthogonally to the measurement slice. The T1-method was used in combination with contrast agent based measurements to quantify the regional blood volume and the extracellular volume fraction. There has been an increased interest in extracellular volume fraction measurements as the extracel- lular volume is used as a proxy for the detection of diffuse fibrosis, which has previously been inaccessible to non-invasive methods. Several correction factors are used in volume fraction quantification, but the influence of hematocrit in ECV measurements has been neglected so far. In mice and rats, the regional blood volume is a major constituent of the ECV, leading to a significant influence of hematocrit. A new correction is proposed to account for the volume fraction taken up by hematocrit. For this ECV hematocrit correction, the RBV has to be measured as well. Using both measurements, the ex- tracellular volume fraction can be corrected and the extracellular-extravascular-volume- fraction quantified. A fundamentally different contrast-mechanism can be utilized using the measurement of chemical exchange. Instead of shortening relaxation times, the contrast provided by chemical exchange agents can be turned on and off using frequency selective rf-pulses. Due to the chemical exchange the effect of these pulses can be accumulated. Measure- ments exploiting this accumulation effect in general produce a negative contrast requiring a control-experiment for further evaluation. In the last part of this dissertation, a new technique transferring excitation instead of saturation could be demonstrated. By ge- nerating a real positive contrast, no control experiment is required. Other properties unavailable to previously published chemical exchange transfer methods can be exploi- ted. One example demonstrated in this dissertation is the separation of simultaneously excited compounds by their respective phase information imprinted by the excitation pulses. In summary, several robust methods could be implemented to further the capabilities of quantitative physiological MRI. KW - Kernspintomografie KW - Physioloische MRT KW - Modellbasierte Rekonstruktion KW - FAIR-ASL KW - Chemischer Austausch KW - Regionales Blutvolumen KW - Extrazellularvolumen KW - T1-Quantifizierung KW - Kernspinresonanz KW - Myokardiale Perfusion KW - Niere KW - Perfusionsmessung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161061 ER - TY - THES A1 - Winter, Patrick T1 - Neue Methoden zur Quantitativen Kardiovaskulären MR-Bildgebung T1 - New methods for quantitative cardiovascular magnetic resonance imaging N2 - Herzkreislauferkrankungen stellen die häufigsten Todesursachen in den Industrienationen dar. Die Entwicklung nichtinvasiver Bildgebungstechniken mit Hilfe der Magnetresonanz-Tomografie (MRT) ist daher von großer Bedeutung, um diese Erkrankungen frühzeitig zu erkennen und um die Entstehungsmechanismen zu erforschen. In den letzten Jahren erwiesen sich dabei genetisch modifzierte Mausmodelle als sehr wertvoll, da sich durch diese neue Bildgebungsmethoden entwickeln lassen und sich der Krankheitsverlauf im Zeitraffer beobachten lässt. Ein große Herausforderung der murinen MRT-Bildgebung sind die die hohen Herzraten und die schnelle Atmung. Diese erfordern eine Synchronisation der Messung mit dem Herzschlag und der Atmung des Tieres mit Hilfe von Herz- und Atemsignalen. Konventionelle Bildgebungstechniken verwenden zur Synchronisation mit dem Herzschlag EKG Sonden, diese sind jedoch insbesondere bei hohen Feldstärken (>3 T) sehr störanfällig. In dieser Arbeit wurden daher neue Bildgebungsmethoden entwickelt, die keine externen Herz- und Atemsonden benötigen, sondern das MRT-Signal selbst zur Bewegungssynychronisation verwenden. Mit Hilfe dieser Technik gelang die Entwicklung neuer Methoden zur Flussbildgebung und der 3D-Bildgebung, mit denen sich das arterielle System der Maus qualitativ und quantitativ erfassen lässt, sowie einer neuen Methode zur Quantisierung der longitudinalen Relaxationszeit T1 im murinen Herzen. Die in dieser Arbeit entwickelten Methoden ermöglichen robustere Messungen des Herzkreislaufsystems. Im letzten Kapitel konnte darüber hinaus gezeigt werden dass sich die entwickelten Bildgebungstechniken in der Maus auch auf die humane Bildgebung übertragen lassen. N2 - Cardiovascular diseases are one of the main causes of death in western countries. Hence, the development of non-invasive imaging techniques using Magnetic Resonance Imaging (MRI) is very important for early detection of these illnesses and for examination of the biological mechanisms. In the past years genetically modified mouse models have proven to be great assets, since they allow the development of new imaging techniques and to investigate the progress of cardiovascular diseases in time lapse. The main challenge of murine MRI is the high heart rate und the fast respiration. Hence, synchronization of the measurement with cardiac motion and breathing by using cardiac and respiration signals is required. Most imaging techniques use ECG leads for synchronization with the heartbeat, however, these probes are prone to disturbances at high magnetic field strengths (>3 T). In this work new imaging techniques were developed that do not use external cardiac and respiration signals but the MRI signal itself for motion synchronization. With these techniques new methods for flow quantification und 3D imaging could be developed for qualitative and quantitative measurements in the murine arteries. Furthermore, a new method for quantification of the longitudinal relaxation time T1 in the murine heart could be developed. The methods presented in this work enable more robust measurements of the cardiovascular system. In the last chapter it could be shown that the imaging techniques developed in the mouse can also be transferred to human MRI. KW - Kernspintomografie KW - Kardiovaskuläres System KW - Flussbildgebung KW - 3D-Bildgebung KW - Selbstnavigation KW - T1 KW - UTE KW - Maus KW - Aorta KW - Herzmuskel KW - Herzschlag Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174023 ER - TY - THES A1 - Munz, Eberhard T1 - Physiological and metabolical high-resolution MRI of plants T1 - Physiologische und metabolische hochaufgelöste Pflanzen-Magnetresonanzbildgebung N2 - The noninvasive magnetic resonance imaging technique allows for the investigation of functional processes in the living plant. For this purpose during this work, different NMR imaging methods were further developed and applied. For the localisation of the intrusion of water into the germinating rape seed with the simultaneous depiction of the lipid-rich tissue via a 3D rendering, in Chap. 5 the technique of interleaved chemical selective acquisition of water and lipid was used in the germinating seed. The utilization of high-resolution MR images of germinated seeds enabled the localization of a predetermined water gap in the lipid-rich aleurone layer, which resides directly under the seed coat. The for a long time in biology prevalent discussion, whether such a gap exists or the seed soaks up the water from all sides, rather like a sponge, could hereby, at least for the rapeseed seed, be answered clearly. Furthermore, the segmentation and 3D visualization of the vascular tissue in the rapeseed seeds was enabled by the high-resolution datasets, a multiply branched structure preconstructed in the seed could be shown. The water is directed by the vascular tissue and thus awakens the seed gradually to life. This re-awakening could as well be tracked by means of invasive imaging via an oxygen sensor. In the re-awakened seeds, the lipid degradation starts, other than expected, not in the lipid-rich cotyledons but in the residual endosperm remaining from seed development and in the aleurone layer which previously protected the embryo. Within this layer, the degradation could be verified in the high-resolution MR datasets. The method presented in Chap. 6 provides a further characteristic trait for phenotyping of seeds and lipid containing plants in general. The visualization of the compounds of fatty acids in plant seeds and fruits could be achieved by the distinct utilization of chemical shift-selective imaging techniques. Via the application of a CSI sequence the fatty acid compounds in an olive were localized in a 2D slice. In conjunction with an individually adjusted CHESS presaturation module Haa85 the high-resolution 3D visualization of saturated and unsaturated fatty acid compounds in different seeds was achieved. The ratio maps calculated from these datasets allow to draw conclusions from the developmental stage or the type of seed. Furthermore, it could be shown that the storage condition of two soybean seeds with different storage time durations lead to no degradation of the fatty acid content. Additional structural information from inside of dry seeds are now accessible via MRI. In this work the imaging of cereal seeds could be significantly improved by the application of the UTE sequence. The hitherto existing depictions of the lipid distribution, acquired with the spin echo sequence, were always sufficient for examinations of the lipid content, yet defects in the starchy endosperm or differences in the starch concentration within the seed remained constantly unseen with this technique. In a direct comparison of the datasets acquired with the previous imaging technique (spin echo) and with UTE imaging, the advantage of data acquisition with UTE could be shown. By investigating the potential seed compounds (starch, proteins, sugar) in pure form, the constituent parts contributing to the signal could be identified as bound water (residual moisture) and starch. The application of a bi-exponential fit on the datasets of the barley seed enabled the separate mapping of magnetization and of relaxation time of two components contributing to the NMR signal. The direct comparison with histological stainings verified the previous results, thus this technique can be used for the selective imaging of starch in dry seeds. Conclusions on the translocation characteristics in plants can be drawn by the technique proposed in Chap. 8. The associated translocation velocities can now, even in the range of several um/h, be determined in the living plant. Based on calculated concentrations of an MR contrast agent, which was taken up by the plant, these translocation velocities were estimated both in longitudinal direction, thus along the vascular bundle, and in horizontal direction, thus out of the bundle. The latter velocity is located below the contrast agent's velocity value of free diffusion. By adjusting a dynamic contrast-enhancing imaging technique (DCE-Imaging, Tof91) the acquisition duration of a T1-map was significantly reduced. By means of these maps, local concentrations of the contrast agent in plant stems and the siliques of the rapeseed plant could be determined. Numerous questions in plant science can only be answered by non-invasive techniques such as MRI. For this reason, besides the experimental results achieved in this work, further NMR methods were tested and provided for the investigation of plants. As an example, the study on the imaging of magnetic exchange processes are mentioned, which provided the groundwork for a possible transfer of CEST experiments (Chemical Exchange Saturation Transfer) to the plant. The results are presented in the bachelor thesis of A. Jäger Jae17, which was performed under my supervision, they find great interest under biologists. The development of new technologies, which extend the possibilities for the investigation of living organisms, is of great importance. For this reason, I have contributed to the development of the currently unpublished method RACETE (Refocused Acquisition of Chemical Exchange Transferred Excitations [Jak17, Reu17, Gut18a]). By rephasing the transferred magnetization the utilization of properties which have not been available in chemical "`exchange"' experiments is enabled. With this method a positive contrast is generated, thus a reference experiment is not mandatory. Furthermore, the image phase, which in classical experiments contains no information about the exchanged protons, can be used for the distinct identification of multiple substances which have been excited simultaneously. This recently at the Department of Experimental Physics V developed method can be used in particular for the identification of lipids and for the localization of sugars and amino acids, thus it can serve the enhancement and improvement of non-invasive analytical methods. N2 - Die nicht-invasive Bildgebungstechnik der Magnetresonanz ermöglicht es, funktionelle Prozesse in Pflanzen am lebenden Objekt zu untersuchen. Hierfür wurden im Rahmen dieser Arbeit verschiedene NMR-Bildgebungsmethoden weiterentwickelt und angewendet. Da Pflanzen ein magnetisch sehr inhomogenes Gewebe besitzen, bedingt durch Lufteinschlüsse und das Vorhandensein verschiedenster gelöster Stoffe im Pflanzengewebe, wurden daher hauptsächlich Spin-Echo-Methoden für die Bildgebung verwendet. Um das erste Eindringen des Wassers in den keimenden Raps-Samen bei gleichzeitiger Darstellung des lipid-reichen Gewebes mittels einer 3D-Visualisierung zu lokalisieren, wurde in Kapitel 5 die Technik der verschachtelten, chemisch selektiven Aufnahme von Wasser und Lipid im keimenden Samen verwendet. Durch Verwendung von hochausgelösten MR-Aufnahmen an gekeimten Samen konnte weiterhin in der lipid-reichen Aleuron-Schicht, die sich direkt unter der Samenschale befindet, ein gezielt angelegter Einlass für das Wasser verortet werden. Die in der Biologie lange Zeit verbreitete Diskussion, ob es einen solchen Einlass gibt oder der keimende Samen das Wasser eher wie ein Schwamm von allen Seiten aufsaugt, konnte hierdurch, zumindest für den Raps-Samen, eindeutig beantwortet werden. Weiterhin konnte durch die hoch-aufgelösten Aufnahmen das vaskuläre Gewebe in den Raps-Samen segmentiert und in 3D veranschaulicht werden, es zeigte sich eine mehrfach verzweigte Struktur, die bereits im Samen angelegt ist. Das Wasser folgt hierbei dem vaskulären Gewebe und erweckt hierdurch den Samen schrittweise zum Leben. Dieses Wieder-Erwachen konnte ebenfalls durch die invasive Bildgebung mittels eines Sauerstoff-Sensors nachverfolgt werden. Im nun erwachten Samen selbst beginnt der Lipid-Abbau, anders als zunächst angenommen, nicht in den lipid-haltigen Kotyledonen sondern im von der Samen-Entwicklung verbliebenden Endosperm und in der den Keimling vormals schützenden Aleuron-Schicht. In dieser konnte der Abbau an gekeimten Samen durch hochaufgelöste MR-Aufnahmen nachgewiesen werden. Die in Kapitel 6 vorgeschlagene Methode liefert ein weiteres Merkmal zur Phenotypisiserung von Samen und lipidhaltigen Pflanzenbestandteilen im Allgemeinen. Die Darstellung der Bestandteile ungesättigter Fettsäuren in Pflanzensamen und -Früchten konnte durch gezielte Verwendung von chemisch selektiven Bildgebungstechniken erreicht werden. Durch die Anwendung einer CSI-Sequenz konnten die Fettsäurebestandteile in Oliven in einer 2D-Schicht lokalisiert werden. In Verbindung mit einem jeweils angepassten CHESS-Vorsättigungsmodul Haa85 wurde die hochaufgelöste 3D-Darstellung von gesättigten und ungesättigten Fettsäurebestandteilen in unterschiedlichen Samen erreicht. Rückschlüsse über das Entwicklungsstadium sowie die Sorte der verwendeten Samen können aus den Verhältnis-Karten, die aus den jeweiligen Datensätzen berechnet wurden, gezogen werden. Dass in diesem Fall die Aufbewahrungsmethode zu keiner Degradation der Fettsäurezusammensetzung geführt hat, konnte weiterhin am Beispiel von zwei Sojasamen mit unterschiedlicher Lagerdauer gezeigt werden. Zusätzliche strukturelle Informationen aus dem Inneren trockener Samen sind nun mittels MRT zugänglich. In dieser Arbeit konnte durch die UTE-Sequenz die Bildgebung von Getreidesamen deutlich vorangebracht werden. Die bisherigen Darstellungen der Lipid-Verteilung, aufgenommen mit einer Spin-Echo Sequenz, waren zwar für die Betrachtung des Lipid-Gehalts stets ausreichend, Defekte im stärkehaltigen Endosperm oder Unterschiede in der Stärke-Konzentration innerhalb des Samen blieben mit dieser Technik jedoch stets verborgen. Im direkten Vergleich der mit der bisherigen Technik (Spin-Echo) und der UTE-Bildgebung aufgenommenen Datensätze konnte der Vorteil der Datenaufnahme mit UTE gezeigt werden. Durch die Untersuchung der möglichen Samenbestandteile (Stärke, Proteine, Zucker) in Reinform konnten die zum Signal beitragen Bestandteile als gebundenes Wasser (Restfeuchte) und Stärke identifiziert werden. Die Verwendung bi-exponentiellen Fits and die Messdaten ermöglichte es im Gersten-Samen, zwei zum Signal beitragende Komponenten in getrennten Karten bezüglich ihrer Magnetisierung und Relaxationszeit zu trennen. Der Vergleich mit histologischen Färbungen bestätigte die bisherigen Ergebnisse, somit kann diese Technik zur selektiven Darstellung von Stärke in trockenen Samen verwendet werden. Rückschlüsse auf das Transportverhalten in Pflanzen können durch die in Kapitel 8 vorgestellte Technik gezogen werden. Die zugehörigen Transportgeschwindigkeiten im lebenden Pflanzenobjekt können nun, selbst im Bereich von wenigen $\mu$m/h, bestimmt werden. Diese wurden anhand von berechneten Konzentrationen eines von der Pflanze aufgenommenen MR-Kontrastmittels sowohl in longitudinaler Richtung, also entlang des Leitgewebebündels, als auch in horizontaler Richtung, also aus dem Leitbündel heraus, abgeschätzt werden; Letztere Geschwindigkeit liegt deutlich unter dem Wert der freien Diffusionsgeschwindigkeit des Kontrastmittels. Hierfür wurden durch Anpassung einer dynamischen Kontrast-erhöhenden Bildgebungstechnik (DCE-Imaging, Tof91) die Aufnahmedauer einer für die weiteren Berechnungen benötigen T1-Karte deutlich reduziert. Mittels dieser Karten konnten die lokalen Konzentrationen des Kontrastmittels in Pflanzenstängeln und Schoten der Rapspflanze bestimmt werden. Zahlreiche Fragen in der Pflanzenforschung können nur durch nicht-invasive Techniken wie MRT beantwortet werden. Deswegen wurden, neben den experimentellen Ergebnissen, die mittels dieser Arbeit erreicht wurden, auch weitere NMR Methoden für die Untersuchung von Pflanzen getestet und zur Verfügung gestellt. Als Beispiel seien hier die Untersuchungen zur Bildgebung von magnetischen Austauschprozessen genannt, welche eine Vorarbeit zur möglichen Übertragung con CEST-Experimenten (Chemical Exchange Saturation Transfer) auf das Modell Pflanze liefern. Die Ergebnisse sind in der Bachelor-Arbeit von A. Jäger \cite{jaeger17}, an deren Durchführung ich als Betreuer maßgeblich beteiligt war, dargestellt und finden großes Interesse bei Biologen. Von besonderer Wichtigkeit sind auch die Entwicklungen neuer Technologien, die die Möglichkeiten zur Untersuchung von lebenden Organismen erweitern können. Deswegen habe ich zu der Entwicklung der bislang unveröffentlichten Methode RACETE (Refocused Acquisition of Chemical Exchange Transferred Excitations [Jak17, Reu17, Gut18a]) beigetragen. Durch das Rephasieren der transferierten Magnetisierung können Eigenschaften, die bislang in chemischen "`Austausch"'-Experimenten nicht zur Verfügung stehen, ausgenutzt werden. Mit dieser Methode wird ein positiver Kontrast erzeugt, sie ist deshalb nicht zwingend auf ein Referenz-Experiment angewiesen. Weiterhin kann die Bildphase, welche in klassichen CEST-Experimenten keine Information über die ausgetauschten Protonen enthält, zur eindeutigen Identifizierung mehrerer parallel angeregter Substanzen verwendet werden. KW - Kernspintomografie KW - Pflanzen KW - Pflanzenbildgebung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172518 ER - TY - THES A1 - Kreutner, Jakob T1 - Charakterisierung des Knochens und seiner Mikrostruktur mit hochauflösender 3D-MRT T1 - Characterization of Bone and its Microstructure using High-resolution 3D-MRI N2 - Neue Therapieansätze durch Tissue Engineering erfordern gleichzeitig angepasste Diagnosemöglichkeiten und nicht-invasive Erfolgskontrollen. Speziell die 3D-MR-Bildgebung ist ein vielversprechendes Instrument, um Parameter mit hoher räumlicher Präzision zu quantifizieren. Vor diesem Hintergrund wurden im Rahmen dieser Arbeit neue Ansätze für die hochauflösende 3D-MRT in vivo entwickelt und deren Eignung im Bereich des Tissue Engineerings gezeigt. Welchen Vorteil die Quantifizierung von Parametern bietet, konnte im Rahmen einer prä-klinischen Studie an einem Modell der Hüftkopfnekrose gezeigt werden. Der Therapieverlauf wurde zu verschiedenen Zeitpunkten kontrolliert. Trotz der niedrigen räumlichen Auflösung, konnten durch eine systematische Auswertung der Signalintensitäten von T1- und T2-FS-gewichteten Aufnahmen Rückschlüsse über Veränderungen in der Mikrostruktur gezogen werden, die darüber hinaus in guter Übereinstimmung mit Ergebnissen von ex vivo µCT-Aufnahmen waren. Dort konnte eine Verdickung der Trabekelstruktur nachgewiesen werden, welche sehr gut mit einer Signalabnahme in den T1-gewichteten Aufnahmen korrelierte. Die radiale Auswertung der Daten erlaubte dabei eine komprimierte Darstellung der Ergebnisse. Dadurch wurde eine effiziente Auswertung der umfangreichen Daten (verschiedene Tiere an mehreren Zeitpunkten mit einer Vielzahl an Einzelaufnahmen) ermöglicht und eine unabhängige Bewertung erreicht. Um die Limitationen der begrenzten Auflösung von 2D-Multi-Schichtaufnahmen aufzuheben, wurden neue Ansätze für eine hochaufgelöste 3D-Aufnahme entwickelt. Hierfür wurden Spin-Echo-basierte Sequenzen gewählt, da diese eine genauere Abbildung der Knochenmikrostruktur erlauben als Gradienten-Echo-basierte Methoden. Zum einen wurde eine eigene 3D-FLASE-Sequenz entwickelt und zum anderen eine modifizierte 3D-TSE-Sequenz. Damit an Patienten Aufnahmen bei klinischer Feldstärke von 1,5 T mit einer hohen räumlichen Auflösung innerhalb einer vertretbaren Zeit erzielt werden können, muss eine schnelle und signalstarke Sequenz verwendet werden. Eine theoretische Betrachtung bescheinigte der TSE-Sequenz eine um 25 % höhere Signaleffizienz verglichen mit einer FLASE-Sequenz mit identischer Messzeit. Dieser Unterschied konnte auch im Experiment nachgewiesen werden. Ein in vivo Vergleich der beiden Sequenzen am Schienbein zeigte eine vergleichbare Darstellung der Spongiosa mit einer Auflösung von 160 × 160 × 400 µm. Für die Bildgebung des Hüftkopfs mit der neuen Sequenz waren jedoch aufgrund der unterschiedlichen Anatomie weitere Modifikationen notwendig. Um längere Messzeiten durch ein unnötig großes Field-of-View zu vermeiden, mussten Einfaltungsartefakte unterdrückt werden. Dies wurde durch die orthogonale Anwendung der Anregungs- und Refokussierungspulse in der TSE-Sequenz effizient gelöst. Technisch bedingt konnte jedoch nicht eine vergleichbare Auflösung wie am Schienbein realisiert werden. Der Vorteil der 3D-Bildgebung, dass Schichtdicken von deutlich weniger als 1 mm erreicht werden können, konnte jedoch erfolgreich auf den Unterkiefer übertragen werden. Der dort verlaufende Nervus Mandibularis ist dabei eine wichtige Struktur, deren Verlauf im Vorfeld von verschiedenen operativen Eingriffen bekannt sein muss. Er ist durch eine dünne knöcherne Wand vom umgebenden Gewebe getrennt. Im Vergleich mit einer 3D-VIBE-Sequenz zeigte die entwickelte 3D-TSE-Sequenz mit integrierter Unterdrückung von Einfaltungsartefakten eine ähnlich gute Lokalisierung des Nervenkanals über die gesamte Länge der Struktur. Dies konnte in einer Studie an gesunden Probanden mit verschiedenen Beobachtern nachgewiesen werden. Durch die neue Aufnahmetechnik konnte darüber hinaus die Auflösung im Vergleich zu bisherigen Studien deutlich erhöht werden, was insgesamt eine präzisere Lokalisierung des Nervenkanals erlaubt. Ein Baustein des Tissue Engineerings sind bio-resorbierbare Materialien, deren Abbau- und Einwachsverhalten noch untersucht werden muss, bevor diese für die klinische Anwendung zugelassen werden. Die durchgeführten in vitro µMR-Untersuchungen an Polymerscaffolds zeigten die reproduzierbare Quantifizierung der Porengröße und Wandstärke. Darüber hinaus wurde eine inhomogene Verteilung der Strukturparameter beobachtet. Die Ergebnisse waren in guter Übereinstimmung mit µCT-Aufnahmen als Goldstandard. Unterschiedliche Varianten der Scaffolds konnten identifiziert werden. Dabei bewies sich die MR-Bildgebung als zuverlässige Alternative. Insgesamt zeigen die Ergebnisse dieser Arbeit, welche Vorteile und Anwendungsmöglichkeiten die 3D-MRT-Bildgebung bietet, und dass auch mit klinischer Feldstärke in vivo Voxelgrößen im Submillimeterbereich für alle Raumrichtungen erreichbar sind. Die erzielten Verbesserungen in der räumlichen Auflösung erhöhen die Genauigkeit der verschiedenen Anwendungen und ermöglichen eine bessere Identifikation von kleinen Abweichungen, was eine frühere und zuverlässigere Diagnose für Patienten verspricht. N2 - New tissue engineering based therapies require adjusted diagnostic methods as well as non-invasive therapy monitoring. Especially 3D MR imaging is a promising tool for parameter quantification at high spatial precision. To serve that need new approaches for high resolution in vivo 3D MRI were developed and their applications in combination with tissue engineering have been demonstrated. The advantages of parameter quantification have been demonstrated in a preclinical study of a femoral heck necrosis model in a large animal. Therapy progress has been monitored at different time points. Despite a commonly used 2D imaging protocol a systematic evaluation of signal intensities from T1 and T2-FS weighted images allowed to draw conclusions about changes in bone microstructure. These results were in good agreement with ex vivo µCT images. The observed increase of trabecular thickness were highly correlated with a signal decrease in the T1 weighted images. The radial evaluation of the data allowed a compressed representation of the results. This lead to an efficient evaluation of numerous data (different animals at various time points with huge number of images each) and allowed an observer independent evaluation. To overcome the limitations from the limited spatial resolution in 2D multi slice images, new approaches for a high-resolution 3D imaging were developed. The focus was on spin echo based sequences due to their better representation of bone microstructure compared to gradient echo based sequences. On one hand a 3D FLASE sequence was developed and on the other hand a modified 3D TSE sequence. To achieve a high resolution in vivo at clinical field strength of 1.5 T within a reasonable scan time, a fast and signal intense sequence is strongly required. A theoretical evaluation of signal equations attributed an increase of 25 % to the TSE sequence compared to the FLASE sequence at identical scan time and resolution. This difference was also observed in experimental results. An in vivo comparison of both sequences at the distal tibia showed a comparable depiction of bone microstructure at a resolution of 160 × 160 × 400 µm. To apply this sequence for high resolution imaging of the femoral head, further modifications were necessary due to the different anatomy. A large field of view had to be avoided to reduce the overall scan time, thus aliasing artifacts had to be suppressed. This was achieved by orthogonal application of excitation and refocusing pulses in the TSE sequence. However, due to technical limitations the achievable resolution was lower than at the distal tibia. A slice thickness much smaller than 1 mm is one of the biggest advantages of 3D MRI and this sequence was successfully applied to imaging of the mandible. The course of the mandibular canal must be known before many surgeries, in order to avoid damaging this structure. The canal is separated from the surrounding only by a small bony wall. In comparison to a 3D VIBE sequence the developed 3D TSE sequence with incorporated aliasing suppression showed a comparable good localization of the canal across the full length of the structure. This was demonstrated in a study with various healthy volunteers and different observers. In comparison to previous results the new imaging technique allowed an increase of spatial resolution to a isotropic voxel size of 0.5 mm, which in total provides a higher precision for localizing the nerve canal. One important element in tissue engineering are bio resorbable materials. Their degradation and ingrowth process must be evaluated before they can be approved for clinical application. The performed in vitro µMRstudies at polymer scaffolds showed a reproducible quantification of pore size and wall thickness for different samples. Additionally, an inhomogeneous distribution of parameters in some samples was observed. The results were in good agreement with data based on µCT images, which are considered to be gold standard for this evaluation and showed significant differences between different groups of scaffolds. The results of this work demonstrate the advantages and possible applications of 3D MRI in clinical applications. Even at clinical field strength it is possible to achieve submillimeter resolution for all three spatial dimension within reasonable scan time. The achieved improvements in spatial resolution allow for an improved precision of the different applications as well as a better identification of small local deviations, which promises an earlier and more reliable diagnosis for patients. KW - Kernspintomografie KW - Mikrostruktur KW - Knochen KW - hochauflösende Bildgebung KW - 3D-Bildgebung KW - Knochenstruktur KW - Spin-Echo KW - Trabekel KW - Hüftkopfnekrose KW - Tissue Engineering Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168858 ER - TY - THES A1 - Ponce Garcia, Irene Paola T1 - Strategies for optimizing dynamic MRI T1 - Strategien zur Optimierung der dynamischen MR Bildgebung N2 - In Magnetic Resonance Imaging (MRI), acquisition of dynamic data may be highly complex due to rapid changes occurred in the object to be imaged. For clinical diagnostic, dynamic MR images require both high spatial and temporal resolution. The speed in the acquisition is a crucial factor to capture optimally dynamics of the objects to obtain accurate diagnosis. In the 90’s, partially parallel MRI (pMRI) has been introduced to shorten scan times reducing the amount of acquired data. These approaches use multi-receiver coil arrays to acquire independently and simultaneously the data. Reduction in the amount of acquired data results in images with aliasing artifacts. Dedicated methods as such Sensitivity Encoding (SENSE) and Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) were the basis of a series of algorithms in pMRI. Nevertheless, pMRI methods require extra spatial or temporal information in order to optimally reconstruct the data. This information is typically obtained by an extra scan or embedded in the accelerated acquisition applying a variable density acquisition scheme. In this work, we were able to reduce or totally eliminate the acquisition of the training data for kt-SENSE and kt-PCA algorithms obtaining accurate reconstructions with high temporal fidelity. For dynamic data acquired in an interleaved fashion, the temporal average of accelerated data can generate an artifact-free image used to estimate the coil sensitivity maps avoiding the need of extra acquisitions. However, this temporal average contains errors from aliased components, which may lead to signal nulls along the spectra of reconstructions when methods like kt-SENSE are applied. The use of a GRAPPA filter applied to the temporal average reduces these errors and subsequently may reduce the null components in the reconstructed data. In this thesis the effect of using temporal averages from radial data was investigated. Non-periodic artifacts performed by undersampling radial data allow a more accurate estimation of the true temporal average and thereby avoiding undesirable temporal filtering in the reconstructed images. kt-SENSE exploits not only spatial coil sensitivity variations but also makes use of spatio-temporal correlations in order to separate the aliased signals. Spatio-temporal correlations in kt-SENSE are learnt using a training data set, which consists of several central k-space lines acquired in a separate scan. The scan of these extra lines results in longer acquisition times even for low resolution images. It was demonstrate that limited spatial resolution of training data set may lead to temporal filtering effects (or temporal blurring) in the reconstructed data. In this thesis, the auto-calibration for kt-SENSE was proposed and its feasibility was tested in order to completely eliminate the acquisition of training data. The application of a prior TSENSE reconstruction produces the training data set for the kt-SENSE algorithm. These training data have full spatial resolution. Furthermore, it was demonstrated that the proposed auto-calibrating method reduces significantly temporal filtering in the reconstructed images compared to conventional kt-SENSE reconstructions employing low resolution training images. However, the performance of auto-calibrating kt-SENSE is affected by the Signal-to-Noise Ratio (SNR) of the first pass reconstructions that propagates to the final reconstructions. Another dedicated method used in dynamic MRI applications is kt-PCA, that was first proposed for the reconstruction of MR cardiac data. In this thesis, kt-PCA was employed for the generation of spatially resolved M0, T1 and T2 maps from a single accelerated IRTrueFISP or IR-Snapshot FLASH measurement. In contrast to cardiac dynamic data, MR relaxometry experiments exhibit signal at all temporal frequencies, which makes their reconstruction more challenging. However, since relaxometry measurements can be represented by only few parameters, the use of few principal components (PC) in the kt-PCA algorithm can significantly simplify the reconstruction. Furthermore, it was found that due to high redundancy in relaxometry data, PCA can efficiently extract the required information from just a single line of training data. It has been demonstrated in this thesis that auto-calibrating kt-SENSE is able to obtain high temporal fidelity dynamic cardiac reconstructions from moderate accelerated data avoiding the extra acquisition of training data. Additionally, kt-PCA has been proved to be a suitable method for the reconstruction of highly accelerated MR relaxometry data. Furthermore, a single central training line is necessary to obtain accurate reconstructions. Both reconstruction methods are promising for the optimization of training data acquisition and seem to be feasible for several clinical applications. N2 - Dynamische Bildgebung mithilfe der Magnetresonanztomographie stellt eine besondere Herausforderung dar. Für klinische Anwendungen benötigt man Bilder mit hoher räumlicher und bei schnellen Bewegungen auch zeitlicher Auflösung. Technologische Fortschritte in den letzten Jahrzehnten konnten MRT-Experimente erheblich beschleunigen. Ein wichtiger Beitrag lieferte die parallele Bildgebung (pMRT), die durch die Entwicklung von Spulenarrays für den Empfang des MR-Signals ermöglicht wurde. In paralleler Bildgebung wird nur ein Teil der eigentlich benötigten Daten aufgenommen. Diese Unterabtastung des k-Raum führt zu Bildern mit Aliasing-Artefakten. Verschiedenste Algorithmen wurden entwickelt, um mittels der zusätzlichen räumlichen Informationen der Spulenarrays anschließend Bilder zu rekonstruieren. Heute spielen Sensitivity Encoding (SENSE) und Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) eine große und bilden eine Grundlage für eine Vielzahl anderer Algorithmen. Einen Großteil aller pMRT Methoden erfordern für optimale Ergebnisse zusätzliche räumliche oder zeitliche Informationen zur Kalibrierung. Diese Kalibrations- oder Trainingsdaten werden in der Regel durch einen zusätzlichen Scan erzeugt oder in die beschleunigte Messung eingebettet aufgenommen. Das ist eine unerwünschte Verlängerung der Messzeit die Folge. In dieser Arbeit konnten wir kt-SENSE und kt-PCA Rekonstruktionen dynamischer MRT Daten mit hoher zeitlicher Genauigkeit erzielen bei gleichzeitiger Reduktion bzw. sogar Beseitigung der benötigten Menge an Trainingsdaten. Um die in beiden Methoden benötigten Spulensensitivitäten zu berechnen, kann bei bestimmten Abtastschemata mit dem Mittelwert der dynamischen Daten ein weitgehend Artefakt-freies Bild erzeugt werden. Dieser zeitliche Mittelwert enthält jedoch kleine Fehler, die durch die Anwendung von Methoden wie kt-SENSE zu Signalauslöschungen im Spektrum der rekonstruierten Daten führen können. Es konnte gezeigt werden, dass die Anwendung eines GRAPPA Filter auf den zeitlichen Mittelwert die Fehler in den Spulensensitivitäten reduziert und die Rekonstruktion von Daten aller Frequenzen ermöglicht. Eine weitere aufgezeigte Möglichkeit ist die Verwendung einer radialen Akquisition, die dank der inkohärenten Aliasing-Artefakte ebenfalls zu einer erheblich genaueren Abschätzung des zeitlichen Mittelwerts führt. Dies verhindert zeitliche Ungenauigkeiten in den rekonstruierten Bildern. Zusätzliche zu Spulensensitivitäten verwenden Rekonstruktionsmethoden wie kt-SENSE Vorkenntnisse über räumlich-zeitliche Korrelationen, um Artefakte zu entfernen. Informationen darüber werden gewöhnlich aus voll aufgenommenen Trainingsdaten mit geringer Auflösung extrahiert. Die separate Akquisitions dieser Trainingsdaten verursacht eine unerwünschte Verlängerung der Messzeit. In dieser Arbeit wurde gezeigt, dass die niedrige Auflösung der Trainingsdaten zu zeitlichen Filterungseffekten in den rekonstruierten Daten führen kann. Um dies zu verhindern und um die zusätzliche Aufnahme von Trainingsdaten zu vermeiden, wurde eine Autokalibrierung für kt-SENSE vorgeschlagen und untersucht. Hierbei werden die benötigten Trainingsdaten in einem ersten Schritt durch eine TSENSE Rekonstruktion aus den unterabgetasteten Daten selbst erzeugt. Dank der vollen Auflösung dieser Trainingsdaten kann das Auftreten eines zeitlichen Filters verhindert werden. Die Leistung der Auto-kalibration wird lediglich durch einen Einfluss des SNRs der TSENSE Trainingsdaten auf die finalen Rekonstruktionen beeinträchtigt. Ein weiteres Verfahren für die dynamische MRT ist kt-PCA, das zunächst für die Rekonstruktion von MR-Herzdaten vorgeschlagen wurde. In dieser Arbeit wurde kt-PCA für die neurologische MR Relaxometrie verwendet. Hierbei konnten aus beschleunigten IRTrueFISP und IR-Snapshot-FLASH Messungen genaue M0, T1 und T2 Karten gewonnen werden. Im Gegensatz zur Herzbildgebung weisen MR Relaxometrie Datensätze Signal auf alles zeitlichen Frequenzen auf, was ihre Rekonstruktion mit konventionellen Methoden erschwert. Andererseits können die zeitlichen Signalverläufe mit einigen wenigen Parametern dargestellt werden und die Rekonstruktion mittels kt-PCA vereinfacht sich erheblich aufgrund der geringen Anzahl benötigter Hauptkomponenten (PC). Weiter wurde gezeigt, dass aufgrund der hohen Redundanz ein Trainingsdatensatz bestehend aus einer einzigen Zeile ausreicht, um alle relevanten Informationen zu erhalten. In dieser Thesis wurde demonstriert, dass mit dem Ansatz einer auto-kalibrierten kt-SENSE Rekonstruktion Bilder mit hoher zeitlicher Genauigkeit aus beschleunigten Datensätzen des Herzens gewonnen werden können. Dies vermeidet die gewöhnlich benötigte zusätzliche Aufnahme von Trainingsdaten. Weiterhin hat sich kt-PCA als geeignetes Verfahren zur Rekonstruktion hochbeschleunigter MR Relaxometrie Datensätze erwiesen. In diesem Fall war ein Trainingsdatensatz bestehend aus einer einzelnen Zeile ausreichend für Ergebnisse mit hoher Genauigkeit. KW - Kernspintomografie KW - Dynamische Messung KW - Magnetic resonance KW - Magnetische Resonanz KW - Dynamic magnetic resonance imaging KW - Dynamische MR Bildgebung KW - DNMR-Spektroskopie KW - Bildgebendes Verfahren Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162622 ER - TY - THES A1 - Carinci, Flavio T1 - Quantitative Characterization of Lung Tissue Using Proton MRI T1 - Quantitative Charakterisierung des Lungengewebes mithilfe von Proton-MRT N2 - The focus of the work concerned the development of a series of MRI techniques that were specifically designed and optimized to obtain quantitative and spatially resolved information about characteristic parameters of the lung. Three image acquisition techniques were developed. Each of them allows to quantify a different parameter of relevant diagnostic interest for the lung, as further described below: 1) The blood volume fraction, which represents the amount of lung water in the intravascular compartment expressed as a fraction of the total lung water. This parameter is related to lung perfusion. 2) The magnetization relaxation time T\(_2\) und T� *\(_2\) , which represents the component of T\(_2\) associated with the diffusion of water molecules through the internal magnetic field gradients of the lung. Because the amplitude of these internal gradients is related to the alveolar size, T\(_2\) und T� *\(_2\) can be used to obtain information about the microstructure of the lung. 3) The broadening of the NMR spectral line of the lung. This parameter depends on lung inflation and on the concentration of oxygen in the alveoli. For this reason, the spectral line broadening can be regarded as a fingerprint for lung inflation; furthermore, in combination with oxygen enhancement, it provides a measure for lung ventilation. N2 - Die Magnetresonanztomographie (MRT) stellt ein einzigartiges Verfahren im Bereich der diagnostischen Bildgebung dar, da sie es ermöglicht, eine Vielzahl an diagnostischen Informationen ohne die Verwendung von ionisierenden Strahlen zu erhalten. Die Anwendung von MRT in der Lunge erlaubt es, räumlich aufgelöste Bildinformationen über Morphologie, Funktionalität sowie über die Mikrostruktur des Lungengewebes zu erhalten und diese miteinander zu kombinieren. Für die Diagnose und Charakterisierung von Lungenkrankheiten sind diese Informationen von höchstem Interesse. Die Lungenbildgebung stellt jedoch einen herausfordernden Bereich der MRT dar. Dies liegt in der niedrigen Protondichte des Lungenparenchyms begründet sowie in den relativ kurzen Transversal- Relaxationszeiten T\(_2\) und T� *\(_2\) , die sowohl die Bildau� ösung als auch das Signal-zu-Rausch Verhältnis beeinträchtigen. Des Weiteren benötigen die vielfältigen Ursachen von physiologischer Bewegung, welche die Atmung, den Herzschlag und den Blut� uss in den Lungengefasen umfassen, die Anwendung von schnellen sowie relativ bewegungsunemp� ndlichen Aufnahmeverfahren, um Risiken von Bildartefakten zu verringern. Aus diesen Gründen werden Computertomographie (CT) und Nuklearmedizin nach wie vor als Goldstandardverfahren gehandhabt, um räumlich aufgelöste Bildinformationen sowohl über die Morphologie als auch die Funktionalität der Lunge zu erhalten. Dennoch stellt die Lungen- MRT aufgrund ihrer Flexibilität sowohl eine vielversprechende Alternative zu den anderen Bildgebungsverfahren als auch eine mögliche Quelle zusätzlicher diagnostischer Informationen dar. ... KW - Lung KW - MRI KW - Kernspintomografie KW - Lunge Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151189 ER - TY - THES A1 - Breuer [geb. Hemberger], Kathrin R. F. T1 - Effiziente 3D Magnetresonanzbildgebung schnell abfallender Signale T1 - Efficient 3D Magnetic Resonance Imaging of fast decaying signals N2 - In der vorliegenden Arbeit wird die Rotated-Cone-UTE-Sequenz (RC-UTE), eine 3D k-Raum-Auslesetechnik mit homogener Verteilung der Abtastdichte, vorgestellt. Diese 3D MR-Messtechnik ermöglicht die für die Detektion von schnell abfallenden Signalen notwendigen kurzen Echozeiten und weist eine höhere SNR-Effizienz als konventionelle radiale Pulssequenzen auf. Die Abtastdichte ist dabei in radialer und azimutaler Richtung angepasst. Simulationen und Messungen in vivo zeigen, dass die radiale Anpassung das T2-Blurring reduziert und die SNR-Effizienz erhöht. Die Drehung der Trajektorie in azimutale Richtung ermöglicht die Reduzierung der Unterabtastung bei gleicher Messzeit bzw. eine Reduzierung der Messzeit ohne Auflösungsverlust. Die RC-UTE-Sequenz wurde erfolgreich für die Bildgebung des Signals des kortikalen Knochens und der Lunge in vivo angewendet. Im Vergleich mit der grundlegenden UTE-Sequenz wurden die Vorteile von RC-UTE in allen Anwendungsbeispielen aufgezeigt. Die transversalen Relaxationszeit T2* des kortikalen Knochen bei einer Feldstärke von 3.0T und der Lunge bei 1.5T und 3.0T wurde in 3D isotroper Auflösung gemessen. Außerdem wurde die Kombination von RC-UTE-Sequenz mit Methoden der Magnetisierungspräparation zur besseren Kontrasterzeugung gezeigt. Dabei wurden die Doppel-Echo-Methode, die Unterdrückung von Komponenten mit langer Relaxationszeit T2 durch Inversionspulse und der Magnetisierungstransfer-Kontrast angewendet. Die Verwendung der RC-UTE-Sequenz für die 3D funktionelle Lungenbildgebung wird ebenfalls vorgestellt. Mit dem Ziel der umfassenden Charakterisierung der Lungenfunktion in 3D wurde die simultane Messung T1-gewichteter Bilder und quantitativer T2*-Karten für verschiedene Atemzustände an sechs Probanden durchgeführt. Mit der hier vorgestellten Methode kann die Lungenfunktion in 3D über T1-Wichtung, quantitative T2*-Messung und Rekonstruktion verschiedener Atemzustände durch Darstellung von Ventilation, Sauerstofftransport und Volumenänderung beurteilt werden. N2 - In this thesis the Rotated-Cone-UTE-sequence (RC-UTE), a 3D k- space sampling scheme with uniform sampling density, is presented. 3D RC-UTE provides short echo times enabling the detection of fast decaying signals with higher SNR-efficiency than conventional UTE sequences. In RC-UTE the sampling density is adapted in radial and azimuthal direction. It is shown in simulations and measurements that the density adaption along the radial dimension reduces T2-blurring. By twisting the trajectory along the azimuthal direction fewer projections are needed to fulfill the Nyquist criterion. Thereby, undersampling artefacts or the measurement time is reduced without loss of resolution. RC-UTE has been successfully applied in vivo in cortical bone and the lung. It was shown that the RC-UTE sequence outperforms the standard UTE sequence in all presented applications. In addition, the transversal relaxation time T2* of cortical bone at field strength of 3.0T and the human lung at 1.5T und 3.0T was measured in 3D isotropic resolution. Moreover, the combination of RC-UTE with magnetization preparation techniques for improved image contrast was shown. To this end strategies such as double-echo readout, long T2 suppression by inversion pulses and magnetization transfer contrast imaging were employed. Furthermore, the application of RC-UTE for 3D functional lung imaging is presented. In order to provide broad information about pulmonary function T1-weighted images and quantitative T2*-maps in different breathing states were simultaneously measured in six healthy volunteers. The presented methodology enables the assessment of pulmonary function in 3D by indicating ventilation, oxygen transfer and lung volume changes during free breathing. KW - Kernspintomografie KW - Relaxationszeit KW - Dreidimensionale Bildverarbeitung KW - T2* KW - Ulrakurze Echozeit KW - T1-Wichtung KW - dichteangepasste k-Raum Abtastung KW - Lunge KW - Relaxation KW - Lungenfunktion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150750 ER - TY - THES A1 - Triphan, Simon T1 - T1 und T2*-Quantifizierung in der menschlichen Lunge T1 - T1 and T2* quantification in the human lung N2 - In dieser Arbeit werden für die Anwendung in der menschlichen Lunge optimierte Methoden zur Bestimmung von T1- und T2*-Karten diskutiert: Dc-Gating ermöglicht die Quantifizierung in freier Atmung, wobei für die T1-Quantifizierung mittels Inversion Recovery eine Korrektur des dc-Signals entwickelt wurde. Dies hat den Vorteil, dass Parameterkarten aus mehreren Messungen anhand ihrer dc-Signale passend überlagert werden können. Da T1 und T2* auf unterschiedliche Art und Weise von der Sauerstoffkonzentration abhängen, verbessert dies die Möglichkeit, ΔT1- und ΔT2*- Differenzkarten aus Messungen mit unterschiedlichen O2-Konzentrationen im Atemgas zu erstellen. Die Parameterquantifizierung ist in erster Linie für die Beobachtung von Krankheitsverläufen interessant, da T1 und T2* absolute, vergleichbare Zahlen sind. Da T2* deutlich vom Atemzustand abhängt, ist es auch hierfür sinnvoll, durch Gating identische Atemzustände abzubilden. Um die unterschiedlichen Einflüsse des Sauerstoffs auf T1 und T2* besser vergleichbar zu machen, wurde in dieser Arbeit weiterhin eine kombinierte Messung für beide Parameter implementiert: Da auch diese in freier Atmung stattfindet, profitieren nicht nur die Differenzkarten von der Überlagerung der Bilder, sondern auch der Vergleich der ΔT1- und ΔT2*-Karten untereinander. Messungen mit einer konventionellen kartesischen Methode an COPD-Patienten unter Raumluft- und 100% Sauerstoffatmung ergaben bei Verwendung identischer Atemmasken ein deutlich geringeres ΔT1 als in gesunden Probanden. Dass T1 in der Lunge nicht nur von der Sauerstoffkonzentration sondern auch von der Gewebezusammensetzung und insbesondere auch dem Blutvolumenanteil abhängt, zeigte sich hierbei aber auch an den bei COPD im Mittel sehr viel kürzeren T1-Zeiten bei Raumluft. Die aufgrund emphysematischer Veränderung noch zusätzlich reduzierte Protonendichte im Parenchym kranker Lungen macht diese Messungen allerdings besonders schwierig. Die oben erwähnten Optimierungen der T1-Quantifizierung zielen daher auch darauf ab, das Signal aus der Lunge zu maximieren, um Patientenmessungen einfacher zu machen: Messungen in freier Atmung sind für Patienten nicht nur einfacher, sondern erlauben effektiv auch längere Messzeiten. Insbesondere wurde aber durch die Entwicklung einer radialen Methode die Echozeit zur Messung reduziert, um die kurze T2*-Zeit in der Lunge auszugleichen. Schließlich wurde durch Implementation einer 2D UTE Sequenz die Messung bei der kürzesten vom Scanner erlaubten Echozeit ermöglicht. Die Messungen bei ultrakurzen Echozeiten in Probanden zeigten allerdings deutlich kürzere T1-Zeiten als die zuvor gefundenen oder in der Literatur dokumentierten. In weiteren Experimenten wurde das sichtbare T1 zu mehreren Echozeiten mit Hilfe der zur kombinierten Quantifizierung entwickelten Methode bestimmt. Dabei ergab sich eine Zunahme des gemessenen T1 mit der Echozeit. Aus diesem Verhalten sowie den gefundenen kürzesten und längsten T1 lässt sich schließen, dass das intra- und extravaskuläre Lungenwasser, also Blut bzw. das umgebende Gewebe, mit unterschiedlichen T1- und T2*-Zeiten zum Signal und damit auch dem effektiven T1 beitragen. Dass das TE der Messung die Gewichtung dieser Kompartimente bestimmt, hat dabei mehrere Auswirkungen: Einerseits bedeutet dies, dass beim Vergleich von T1-Messungen in der Lunge stets auch das TE mitbetrachtet werden muss, bei dem diese durchgeführt wurden. Andererseits lässt sich die Möglichkeit, die Messung auf die unterschiedlichen Kompartimente abzustimmen, potentiell ausnutzen, um zusätzliche diagnostische Informationen zu gewinnen: Da T1 vom Blutvolumenanteil und der Gewebezusammensetzung abhängt, könnte dieser Effekt helfen, diese beiden Einflüsse zu differenzieren. Während die in dieser Arbeit beschriebenen Experimente die TE-Abhängigkeit des sichtbaren T1 in Probanden aufzeigen, liefern sie allerdings noch keine genaue Erklärung für die möglichen Ursprünge dieses Effekts. Um diese weiter zu untersuchen, könnten allerdings gezielte Phantom- und in vivo-Experimente Aufschluss geben: Ein Aufbau, der die Feldverzerrung durch luftgefüllte Alveolen in Lösungen mit entsprechenden verschiedenen Suszeptibilitäten nachbildet, reduziert den Unterschied zwischen den Kompartimenten auf T1 und χ. Eine in vivo-Messung mit möglichst großer Differenz zwischen Ex- und Inspiration hingegen könnte den Einfluss der Abstände der Kompartimente vom Gasraum aufzeigen, da die Alveolarwände in tiefer Inspiration am weitesten gedehnt und daher am dünnsten sind. N2 - In this work, methods for the local measurement of T1 and T2* maps optimized for the application in the human lungs are discussed: Quantification during free breathing was enabled by applying dc-gating, where a correction for the dc-signal acquired during T1-quantification using a inversion recovery was introduced. This is especially useful to achieve parameter maps in identical breathing states from multiple measurements using their dc-signals. Since T1 and T2* depend on the oxygen concentration through different mechanisms, this is especially interesting to produce ΔT1- and ΔT2*-difference maps at varying O2-concentrations in the breathing gas. Parameter quantification is primarily interesting for the monitoring of the courses of disease or therapy since T1 and T2* are absolute, comparable numbers. As T2* depends significantly on the respiratory state, ensuring identical states via gating is relevant there as well. To further improve the comparison of oxygen influence on T1 and T2* a method for the combined measurement of both parameters was implemented: Since this is also employs gating, not only the difference maps benefit from image coregistration, but the comparison of the ΔT1 and ΔT2* maps to each other as well. Measurements using the conventional cartesian method on COPD patients under room air and pure oxygen conditions resulted in much lower ΔT1 than in healthy volunteers when using identical oxygen masks. The much lower average T1 times at room air found there demonstrate that T1 in the lungs not only depends on the oxygen concentration but also on tissue composition and especially the blood volume fraction. Proton densities that were reduced even further due to emphysematous destruction made these measurements additionally difficult. Accordingly, the optimizations for T1 quantification mentioned above are intended to maximize signal from the lung parenchyma to improve patient measurements: Measurements during free breathing are not only easier for patients but effectively also allow for longer acquisition times. In particular the developement of a radial method provides a shorter echo time to help compensate for the short T2* in the lungs. Finally, the implementation of a 2D UTE sequence enables the measurement at the shortest echo time available on the scanner hardware. However, the measurements at ultra short echo times in volunteers showed significantly shorter T1 times than those found previously and those reported in the literature. In further experiments, the observable T1 was determined at multiple echo times using the method developed for simultaneous quantification. This revealed a gradual increase of the measured T1 with the echo time. From this behaviour as well as the shortest and longest times found, it can be concluded that the intra- and extravascular compartments of lung water, essentially blood and the surrounding tissue, contribute with different T1 and T2* times to the MR signal and thus also the effective T1. That the echo time of the measurement determines the weighting of these compartments has multiple consequences: Firstly, this means that when comparing T1 measurements in the lungs, the echo time that was used to acquire them also has to be considered. Secondly, the possiblity to focus the measurement on these different compartments might be used to gain additional diagnostic information: Since T1 depends on blood volume content and tissue composition, this effect might help to differentiate these two influences. While the experiments described in this work demonstrate the echo time dependence of the observed T1 in volunteers, they do not yet provide an explanation for the exact origins of this effect. To examine these further, appropriate phantom and in vivo experiments could be insightful: A phantom design that simulates the field distortion caused by air-filled alveoli in solutions with suitable susceptibilites would reduce the difference between the compartments to T1 and χ. A in vivo measurement with an especially large difference between ex- and inspiration could help to show the influence of the distance of the compartments from the gas space, since the alveolar walls are most dilated and thus thinnest during deep inspiration. KW - Kernspintomografie KW - Lunge KW - T2*-Relaxation KW - T1-Relaxtion KW - funktionelle Lungenbildgebung KW - MRT der Lunge KW - Spin-Gitter-Relaxation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139621 ER -