TY - THES A1 - Mayer, Stefanie T1 - Differenzierte β-Arrestin2 Rekrutierung am μ-Opioid Rezeptor durch klinisch eingesetzte Opioide T1 - Differential Opioid-induced β-Arrestin2 Recruitment at the μ-Opioid Receptor Using Clinically Relevant Opioids N2 - Opioide gehören zu den potentesten Analgetika für die Behandlung akuter und chronischer Schmerzen, werden jedoch in ihrer Anwendung durch analgetische Toleranz aber auch Nebenwirkungen wie Abhängigkeit, Atemdepression und Obstipation limitiert. Opioid-Analgetika vermitteln dabei nahezu alle klinisch relevanten Wirkungen durch Stimulation des μ-Opioidrezeptors, einem G- Protein-gekoppelten Rezeptor. Die „klassische“ Signaltransduktion durch Aktivierung inhibitorischer Gi/0-Proteine kann durch G-Protein gekoppelte Rezeptorkinasen (GRKs) und β-Arrestine negativ reguliert werden. Zusätzlich können durch β-Arrestin-Bindung an den Rezeptor G-Protein-unabhängige Signalwege aktiviert werden. Die genauen Mechanismen wie β-Arrestin- assoziierte Rezeptordesensibilisierung, -internalisierung und G-Protein- unabhängige Signalwege an der physiologischen Antwort und insbesondere an Toleranzentwicklung und Abhängigkeit von Opioid-Analgetika beteiligt sind, können bislang nicht ausreichend erklärt werden. In dieser Arbeit konnte in HEK293-Zellen mit Lebendzell-Konfokalmikroskopie und Luciferase-Komplementierung für 17 Opioide eine differenzierte β-Arrestin2- Rekrutierung zum μ-Opioidrezeptor gezeigt werden. Von den untersuchten Opioiden sind 13 häufig eingesetzte Opioid-Analgetika. Durch die Erstellung detaillierter pharmakologischer Profile ließen sich die Opioide bezüglich ihres β- Arrestin2-Rekrutierungsvermögens in Voll-, Partial und Antagonisten eingruppieren. Bemerkenswert war die fehlende β-Arrestin2-Rekrutierung für Buprenorphin, Tramadol und Tilidin, sodass diese interessante Substanzen für weitere Untersuchungen in physiologischerem Kontext sind. Durch Überexpression von GRK2 konnte die β-Arrestin2-Rekrutierung insbesondere für Partialagonisten gesteigert werden, was die Abhängigkeit der β-Arrestin- Rekrutierung vom GRK-Expressionslevel, das in verschiedenen Assays und Gewebetypen variieren kann, zeigt. Außerdem konnte ein heterogenes Bild der Rezeptorregulierung demonstriert werden, welches indirekt durch Endozytosehemmung unter Verwendung von Dynamin-Inhibitoren erfasst wurde. Die erhobenen Daten dienen als Anknüpfungspunkt für weiteren Arbeiten auf dem Gebiet der μ-Opioidrezeptorregulation. Ein besseres Verständnis der molekularen Mechanismen ist nötig, um sichere und nebenwirkungsärmere Opioid-Analgetika entwickeln zu können. N2 - Opioids remain among the most effective analgesics for the treatment of acute and chronic pain, but their clinical use is limited by analgesic tolerance and other side effects including dependence, respiratory depression and obstipation. Opioid analgesics exert nearly all their clinically relevant actions through stimulation of µ-opioid receptors, which belong to the family of G Protein-coupled receptors. “Classical” signaling through activation of inhibitory Gi/o Proteins can be negatively regulated via G Protein-coupled receptor kinases and β-Arrestins. Additionally, recruitment of β-Arrestins to the µ-opioid receptor can transduce G Protein independent signals. The detailed mechanisms how β-Arrestin-induced receptor desensitization, internalization and G Protein independent signaling mediate physiological effects including tolerance and dependence remains unclear. In this study using confocal live-cell imaging and split luciferase complementation in HEK293 cells 17 opioids showed differential β-Arrestin2 recruitment to the µ-opioid receptor. Of the opioids under investigation, 13 are frequently administered opioid analgesics. Detailed pharmacologic profiles of these opioids allowed for grouping into full agonists, partial agonist and antagonists in regards to β-Arrestin2 recruitment. Surprisingly, β-Arrestin2 recruitment was not detected for Buprenorphin, Tramadol and Tilidin, making these substances interesting candidates for further investigations in a more physiological setting. Overexpression of GRK2 led to increased β-Arrestin2 recruitment especially for partial agonists. This demonstrates the dependence on GRK expression level for β-Arrestin recruitment, which can vary between assays or cell types. Furthermore different opioids showed a heterogenous receptor regulation, assessed by inhibition of receptor endocytosis using dynamin inhibitors. The collected data serve as basis for further research on µ-receptor regulation. Better understanding of the molecular mechanisms is necessary for the development of safer opioid analgesics with fewer side effects. KW - Opiatrezeptor KW - µ-Opioid Rezeptor KW - Opioide KW - G-Protein gekoppelte Rezeptoren KW - Arrestine KW - beta-Arrestin2 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240949 ER - TY - THES A1 - Schmid, Benedikt T1 - Molecular Signaling Mechanisms at the µ-Opioid Receptor T1 - Molekulare Signalmechanismen am µ-Opioidrezeptor N2 - To this day, opioids represent the most effective class of drugs for the treatment of severe pain. On a molecular level, all opioids in use today are agonists at the μ-opioid receptor (μ receptor). The μ receptor is a class A G protein-coupled receptor (GPCR). GPCRs are among the biological structures most frequently targeted by pharmaceuticals. They are membrane bound receptors, which confer their signals into the cell primarily by activating a variety of GTPases called G proteins. In the course of the signaling process, the μ receptor will be phosphorylated by GRKs, increasing its affinity for another entity of signaling proteins called β-arrestins (β-arrs). The binding of a β-arr to the activated μ receptor will end the G protein signal and cause the receptor to be internalized into the cell. Past research showed that the μ receptor’s G protein signal puts into effect the desired pain relieving properties of opioid drugs, whereas β-arr recruitment is more often linked to adverse effects like obstipation, tolerance, and respiratory depression. Recent work in academic and industrial research picked up on these findings and looked into the possibility of enhancing G protein signaling while suppressing β-arr recruitment. The conceptual groundwork of such approaches is the phenomenon of biased agonism. It appreciates the fact that different ligands can change the relative contribution of any given pathway to the overall downstream signaling, thus enabling not only receptor-specific but even pathway-specific signaling. This work examined the ability of a variety of common opioid drugs to specifically activate the different signaling pathways and quantify it by means of resonance energy transfer and protein complementation experiments in living cells. Phosphorylation of the activated receptor is a central step in the canonical GPCR signaling process. Therefore, in a second step, expression levels of the phosphorylating GRKs were enhanced in search for possible effects on receptor signaling and ligand bias. In short, detailed pharmacological profiles of 17 opioid ligands were recorded. Comparison with known clinical properties of the compounds showed robust correlation of G protein activation efficacy and analgesic potency. Ligand bias (i.e. significant preference of any path- way over another by a given agonist) was found for a number of opioids in native HEK293 cells overexpressing μ receptor and β-arrs. Furthermore, overexpression of GRK2 was shown to fundamentally change β-arr pharmacodynamics of nearly all opioids. As a consequence, any ligand bias as detected earlier was abolished with GRK2 overexpression, with the exception of buprenorhin. In summary, the following key findings stand out: (1) Common opioid drugs exert biased agonism at the μ receptor to a small extent. (2) Ligand bias is influenced by expression levels of GRK2, which may vary between individuals, target tissues or even over time. (3) One of the opioids, buprenorhin, did not change its signaling properties with the overexpression of GRK2. This might serve as a starting point for the development of new opioids which could lack the ability of β-arr recruitment altogether and thus might help reduce adverse side effects in the treatment of severe pain. N2 - Nach wie vor stellen Opioide die wirkstärkste Gruppe von Medikamenten zu Behandlung starker Schmerzen dar. Auf molekularer Ebene sind alle heute gebräuchlichen Opioide Agonisten am μ-Opioidrezeptor. Der μ-Opioidrezeptor ist ein G-Protein-gekoppelter Rezeptor (GPCR) der Klasse A. GPCR zählen zu den häufigsten Zielstrukturen von Pharmaka. Sie sind membranständige Rezeptoren, die ihr Signal in erster Linie durch die Aktivierung von G-Proteine genannten GTPasen in die Zelle weiterleiten. Im Laufe des Signalprozesses wird der GPCR von GRK phosphoryliert, wodurch seine Affinität zu einer weiteren Gruppe von Signalproteinen, den sog. β-Arrestinen erhöht wird. Bindet ein β-Arrestin an den Rezeptor, beendet dies das G-Proteinsignal und veranlasst die Internalisierung des Rezeptors ins Zellinnere. Bisherige Forschung zeigte, dass das G-Proteinsignal des μ-Opioidrezeptors die erwünschte Schmerzlinderung vermittelt, wohingegen die Rekrutierung von β-Arrestin oftmals mit unerwünschten Wirkungen wie Obstipation, Toleranzentwicklung und Atemdepression in Verbindung gebracht wird. Neuere akademische und industrielle Forschung griff diese Erkenntnisse auf und erkundete die Möglichkeit, das G-Proteinsignal zu verstärken und zur gleichen Zeit die β-Arrestinrekrutierung zu inhibieren. Die theoretische Grundlage solcher Ansätze liegt im Konzept des biased agonism. Dieses berücksichtigt die Tatsache, dass verschiedene Liganden den Anteil eines bestimmten Signalweges am gesamten vom Rezeptor ausgehenden Signals beeinflussen kann und damit nicht nur rezeptor-, sondern sogar signalwegspezifische Signale möglich sein sollten. Die vorliegende Arbeit untersuchte eine Reihe von gängigen Opioiden auf ihre Fähigkeit hin, die einzelnen Signalwege spezifisch zu aktivieren und quantifizierte dies mit Methoden des Resonanzenergietransfers sowie der Proteinkomplementierung in lebenden Zellen. Die Phosphorylierung des Rezeptors ist ein zentrales Ereignis in der anerkannten Abfolge der Signalprozesse an GPCR. Daher wurde in einem weiteren Schritt die Expression der phosphorylierenden GRK erhöht und nach möglichen Auswirkungen auf die Selektivität der Signalwegaktivierung gesucht. Hierbei wurde detaillierte pharmakologische Profile von 17 Opioiden erstellt. Der Abgleich mit bekannten klinischen Wirkeigenschaften der Substanzen zeigte einen robusten Zusammenhang zwischen der Fähigkeit, G-Proteine zu aktivieren und der analgetischen Wirkstärke. Ligand bias, d.h. die signifikante Bevorzugung eines Signalweges gegenüber einem anderen durch einen Liganden, konnte für eine Reihe von Opioiden in lebenden HEK293-Zellen gezeigt werden, die den μ-Opioidrezeptor sowie β-Arrestine überexprimierten. Darüber hinaus konnte gezeigt werden, dass die zusätzliche Überexpression von GRK2 die pharmakodynamischen Eigenschaften nahezu aller Opioide grundlegend veränderte. In der Folge war jeder zuvor gezeigte ligand bias mit Ausnahme von Buprenorphin aufgehoben. Zusammenfassend stehen die folgenden drei Erkenntnisse im Vordergrund: (1) Gängige Opioide zeigen in einem gewissen Maß Selektivität zwischen den Signalwegen. (2) Ligand bias wird beeinflusst von GRK2-Expressionsleveln, welche zwischen Individuen, verschiedenen Gewebetypen oder auch im zeitlichen Verlauf variieren können. (3) Als einziges der untersuchten Opioide änderte Buprenorphin seine Signaleigenschaften durch die Überexpression von GRK2 nicht. Dies könnte als Anknüpfungspunkt in der Entwicklung neuer Opioide dienen, die keinerlei β-Arrestinrekrutierung bewirken und dadurch helfen könnten, unerwünschte Wirkungen in der Behandlung starker Schmerzen zu verhindern. KW - Opiatrezeptor KW - Opioide KW - G-Protein gekoppelte Rezeptoren KW - Pharmakodynamik KW - Arrestine KW - Rezeptorpharmakologie KW - biased agonism KW - signalling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176850 ER - TY - THES A1 - Gehringer, Rebekka T1 - Periphere Mechanismen von Elektroakupunktur bei Entzündungsschmerz T1 - Peripheral mechanisms of electroacupuncture in inflammatory pain N2 - Die Grundlage für diese Arbeit bildete ein Modell mit CFA-(komplettes Freundsches Adjuvant) induziertem Entzündungsschmerz in Ratten, bei denen eine zweimalige Behandlung mit Elektroakupunktur zu einer langanhaltenden Antinozizeption führte, welche abhängig von peripheren Opioiden war. In einem nächsten Schritt sollten nun die durch Akupunktur vermittelten Zytokin- und Chemokinveränderungen untersucht und deren Beitrag zu den antinozizeptiven und anttiinflammatorischen Mechanismen geklärt werden. Mittels ELISA und PCR wurden die Protein- und mRNA-Level der klassischen Zytokine und des Chemokins CXCL10 bestimmt. CXCL10, welches durch Elektroakupunktur sowohl auf Transkriptions- als auch auf Translationsebene hochreguliert wurde, ist notwendig für die Rekrutierung β-Endorphin haltiger Makrophagen in das entzündete Gewebe und für die antinozizeptive Wirkung der Akupunkturbehandlung. Ein antiinflammatorischer Effekt der Akupunkturbehandlung äußerte sich durch die Reduktion von TNF-α und IL-1β und ein erhöhtes IL-13. Das einzige hochregulierte proinflammatorische Zytokin war IFN-γ. Ein Teil der entzündungshemmenden Wirkung, die Reduktion der proinflammatorischen Zytokine TNF-α und IL-1β, wird durch Adenosin-2B-Rezeptoren vermittelt, welche bekannt sind für ihre Rolle in der „Deaktivierung“ IFN-γ-stimulierter Makrophagen. Diese Ergebnisse verweisen auf die bisher unbekannte Verbindung zwischen chemokinvermittelter peripherer, opioidabhängiger Antinozizeption durch Elektroakupunktur. Sie erweitern das Verständnis für das Zusammenspiel von Immunzellen, Adenosin und Akupunktur. Weitere Untersuchungen sind notwendig, um neuroimmunologische Verbindungen zu klären und die Wirkungen durch die Nadelinsertion mit Effekten in der entfernten Rattenpfote besser zu verstehen. N2 - This work is based on a rat model with complete Freund's adjuvant (CFA)-induced hind paw inflammation. Animals were treated twice with electroacupuncture eliciting long-term antinociception, which depended on peripheral opioids. In a next step we wanted to study acupuncture mediated changes in cytokine and chemokine profiles and their contribution to antinociceptive and anti-inflammatory mechanisms. For the measurement of protein and mRNA levels of classical cytokines and the chemokine CXCL10 ELISA and real-time PCR were used. CXCL10, which was upregulated on transcriptional and translational level, increased infiltrating β-endorphin containing macrophages within the inflamed tissue and was necessary for the antinociceptive effect of acupuncture treatment. Anti-inflammatory effects were seen in changed cytokine profiles with decreased TNF-α and IL-1β and increased IL-13. The only pro-inflammatory cytokine which was upregulated was IFN-γ. The anti-inflammatory effect caused by the changed cytokines may partly be mediated by Adenosine-2B Receptors, known for their deactivation of IFN-γ stimulated macrophages. In summary these results show a novel connection of chemokine-mediated, peripheral, opoid-dependent antinociception in electroacupuncture. They expand our understanding of the interaction of immune cells, adenosine and acupuncture. More research is needed to examine neuroimmunological mechanisms and the connection between needle insertion and detected effects in the rat paw. KW - Elektroakupunktur KW - Chemokin CXCL10 KW - Entzündung KW - Schmerz KW - Antinozizeption KW - Opioide Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153261 ER - TY - THES A1 - Sahlbach, Henrike T1 - Toll-like Rezeptoren regulieren die Freisetzung von Opioidpeptiden aus Monozyten T1 - Toll-like receptors control opioid peptide release from monocytes N2 - Schmerz gehört zu den Kardinalsymptomen einer Entzündung. Im Wesentlichen kann die Entstehung von Schmerz am Ort des Entzündungsgeschehens auf das Einwandern (Diapedese) von Leukozyten aus dem peripheren Blut-strom in das Gewebe zurückgeführt werden. Dort findet sowohl die Produktion von Zytokinen und Chemokinen statt, welche weitere Entzündungszellen rekrutieren und die Entzündungsreaktion verstärken, als auch die Freisetzung von Opioidpeptiden, die schmerzlindernd wirken. In Vorarbeiten der Arbeitsgruppe konnte eine Opioidfreisetzung aus neutrophilen Granulozyten nach Stimulation mit bakteriellen Antigenen oder Chemokinen \(in\) \(vitro\) nachgewiesen werden. Diese führen \(in\) \(vivo\) eine Antinozizeption herbei. Für neutrophile Granulozyten wurden der Chemokinrezeptor CXCR1/2 sowie der Formylpep-tidrezeptor als Signal-transmittierende Rezeptoren identifiziert. Über den klassischen Mechanismus der Exozytose gelangt das Beta-Endorphin somit in das Gewebe und interagiert mit Opioidrezeptoren auf primär sensorischen Nervenendigungen. \(in\) \(vivo\) äußerte sich die Freisetzung des Opioidpeptids in einer Anhebung mechanischer Schmerzschwellen, die durch den Opioidrezeptorantagonisten Naloxon aufgehoben werden konnten. Die Bindung, vornehmlich an MOP, führt zur Erniedrigung des cAMP-Spiegels, zur Hyperpolarisation der Nervenzelle und zur Verminderung von Schmerzschwellen. Im Mittelpunkt dieser Arbeit stehen Monozyten als führende Zellpopulation der späten Entzündungsphase. Es sollte untersucht werden, welche Rezeptoren eine Opioidfreisetzung aus Monozyten vermitteln sowie welche intrazellulären Signalwege involviert sind. Humane Monozyten wurden isoliert und \(in\) \(vitro\) mit dem bakteriellen Antigen Lipopolysaccharide (LPS) stimuliert. Dieses steht exemplarisch für mikrobielles Infektgeschehen und Entzündung. In den Zellüberständen wurde mittels ELISA die Beta-Endorphin-Konzentration ermittelt. Weiterhin wurden Opioidgehalt und -freisetzung in der nicht-klassischen CD14+CD16+ Monozytensubpopulation im Vergleich zu klassischen CD14+CD16- Monozyten analysiert. Zur weiteren Aufklärung des Rezeptors, welcher die Opioidfreisetzung vermittelt, wurde der niedermolekulare TLR4-Antagonist TAK-242 genutzt. Wir fanden eine Zunahme der Beta-Endorphin-Freisetzung nach Stimulation mit LPS im Vergleich zur unstimulierten Kontrolle. Eine Zugabe des TLR4-Inhibitors reduzierte die Beta-Endorphin-Freisetzung signifikant. TLR4 agiert somit als PRR für die Opioidfreisetzung aus Monozyten. CD14+CD16+ Monozyten enthalten einen geringeren Anteil an Beta-Endorphin und setzten dementsprechend weniger frei. Ihre Rolle als pro-inflammatorisch und ihre Beteiligung an der Genese inflammatorischer Krankheitsbilder wird dadurch gestützt. Die Signalkaskade, über die diese Freisetzung erfolgt, konnte durch den Einsatz von Rezeptorinhibitoren dahingehend entschlüsselt werden, dass eine Beteiligung des IP3-Rezeptors sowie von intrazellulärem Calcium wichtig ist. Ferner wurde evident, dass auch eine basale Freisetzung existiert, die über denselben Weg verläuft. Durch die Behandlung mit dem TLR4-Antagonisten TAK-242, der die Freisetzung von Beta-Endorphin \(in\) \(vitro\) unterdrückt, wird auch die analgetische Wirkung von LPS \(in\) \(vivo\) aufgehoben. TLR4 Agonisten sind daher potentielle alternative Analgetika, welche die endogene Schmerzkontrolle unterstützen könnten. Jedoch fließen viele Wechselwirkungen wie z.B. proalgetische Wirkungen von TLR4 in das komplexe Gefüge der Immunzellantwort ein. Diese wurden nicht weiter untersucht. Vor einer klinischen Anwendung müssten solche Effekte näher betrachtet werden. N2 - Endogenous opioids from monocytes mediate tonic endogenous antinociception in the late phase of inflammation. Monocytes expressing TLR4 dose-dependently released \(\beta\)-END after stimulation with lipopolysaccharide (LPS) dependent on intracellular calcium. \(in\) \(vitro\) \(\beta\)-endorphin (\(\beta\)-END) content increased during human monocyte differentiation as well as in anti-inflammatory CD14\(^+\)CD16\(^-\) monocytes. Peripheral TLR4 acts as a counter-regulatory mechanism for inflammatory pain \(in\) \(vivo\), and increases the release of opioid peptides from monocytes \(in\) \(vitro\). TLR4 antagonists as new treatments for sepsis and neuropathic pain might unexpectedly enhance pain by impairing peripheral opioid analgesia. KW - Monozyt KW - Toll-like Rezeptoren KW - Endorphin KW - Opioide KW - Schmerzforschung KW - Opioide KW - Toll like receptors KW - analgesia KW - inflammatory pain KW - endogenous opioids KW - Schmerz Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150479 ER - TY - THES A1 - Mambretti, Egle Maria T1 - Opioid receptors as therapeutic targets for nociceptor specific regional analgesia T1 - Opioidrezeptoren als therapeutisches Target einer nozizeptionsspezifischen Regionalanalgesie N2 - Opioids have been, since centuries, the gold standard for pain treatment and relief. They exert their effects after binding to opioid receptors (OP) that are expressed and functional in the central (CNS) and peripheral nervous system (PNS). As their systemic application has many side effects, including sedation and respiratory depression, a peripheral application of opioids and selective targeting of µ-OP (MOP) in nociceptive axons would be extremely beneficial. MOP presence and function has been conclusively demonstrated at nerve terminals; however it is still controversial whether functional MOPs are available on the membrane of peripheral nociceptive axons to mediate opioid-induced antinociception. While under pathologic conditions (i.e. nerve injury) exogenous as well as endogenous MOP agonists applied at the damaged nerve can elicit potent antinociception or anti-allodynia, under physiological conditions no antinociception was seen in rats. This could be caused by either a lack of functional opioid receptors in the axonal membranes or by the inability of injected opioids to cross the intact perineurial barrier and to reach nociceptors. Previous behavioral test results showed an antinociceptive effect (up to 5h) following perisciatic application of the hydrophilic DAMGO (MOP agonist) if coinjected with hypertonic saline solution (HTS; 10% NaCl), a treatment suited to open the perineural barrier. The effect was inhibited by naloxone, a MOP antagonist, documenting its specific action via MOP. Fentanyl, a lipophilic opioid, elicited an effect, which was enhanced by HTS treatment, indicating that HTS may act not only on the barrier but also directly on axonal MOP presence and/or functionality. To provide a basis for testing this hypothesis, the present work was designed to study the axonal localization of MOP in experimental animals under different conditions using molecular and morphological methods. Initially four different commercial antibodies were tested for MOP detection. Immunoreactions with these antibodies specifically detected MOP in the hippocampus and in amygdala, while in the peripheral nervous system the reactions showed varying labeling patterns pointing towards less specificity with low signal-to-noise ratio. Double labelling with calcitonin gene related peptide (CGRP), a neuropeptide expressed in sensory fibers, with the non-compacted myelin marker S100 or with the neuronal marker PGP9.5 documented significant immunoreaction signals outside sensory nerve fibers. Therefore, none of these antibodies appeared suitable. Taking advantage of a new commercial monoclonal rabbit antibody (RabMAb) and of genetically modified mice in which the fluorescent protein mcherry was inserted in the C-tail of MOP (MOP-mcherry knock-in mice), MOP fusion protein expression in rat and mouse CGRP+ sciatic nerve fibers and fiber bundles was confirmed by immunofluorescence labeling. Immunoelectron microscopic analysis indicated MOP/MOP-mcherry-localization in the cytoplasm and the membranes of unmyelinated axons organized in Remak bundles. Both antibodies detected bands of appropriate size in Western Blot in the CNS and additional larger bands in the PNS. Quantitative analyses 60 min after HTS-treatment revealed no change in MOP mRNA in the sciatic nerve and DRG as well as no change in MOP immunoreactivity in the sciatic nerve. Thus, the opioid-induced long lasting antinociception enhanced by perisciatic injection of HTS were not due to a sustained increased MOP expression or content in sensory, putative nociceptive axons. In summary, the current study succeeded to unequivocally document the presence of MOP protein in intact sensory axons of rat and mouse sciatic nerve. Thus, axonal MOPs may indeed mediate antinociceptive opioid effects observed in behavioral studies in naive animals possibly via activation of potassium or calcium channels. As HTS treatment does not lead to a sustained increase in axonal MOP protein or MOP mRNA expression, other mechanisms might enhance MOP function, including inhibition of MOP recycling or changes in functional coupling. Future studies should further explore the axonal mechanisms of antinociception by opioids and enhancing treatments. N2 - Opioide sind seit Jahrhunderten der Goldstandard für die Schmerzbehandlung. Sie entfalten ihre Wirkung nach der Bindung mit Opioidrezeptoren (OP), die im zentralen (ZNS) und peripheren (PNS) Nervensystem exprimiert und funktionell sind. Da die systemische Anwendung viele Nebenwirkungen hat, wie die Beruhigung und Atemdepression, wäre eine Anwendung von Opioiden und die gezielte Targeting von µ-OP (MOP) in nozizeptiven Axone in Rahmen einer Regionalanalgesie besser. Die Anwesenheit und die Funktionalität der MOP wurden zwar schon in Nervenendungen gezeigt, aber es ist noch strittig, ob funktionelle MOP in der Membran von peripheren nozizeptiven Axonen sind, um opioid-induzierte Antinozizeption zu vermitteln. Während bei Erkrankungen der Nerven (z.B. traumatische Nervenbeschädigung) exogene und endogene MOP-Agonisten Antinozizeption und Antiallodynie bewirken, konnte in gesunden Ratten kein Effekt bei perineuraler Injektion am Nerven beobachtet werden. Dies könnte entweder durch einen Mangel an funktionellen OP in axonalen Membranen verursacht sein. Alternativ könnte die mangelde Penetration der injizierten Opioide durch die Barriere des Perineuriums verantwortlich sein, die es verhindert, dass die Opioide die Nozizeptoren erreichen. Vorherige Ergebnisse aus Schmerzverhaltenstests zeigten eine Anhebung von mechanischen nozizeptiven Schwellen (bis 5 h) nach perineuraler Anwendung des hydrophilen MOP-Agonisten DAMGO, wenn dieser mit einer hypertonen Lösung (HTS; 10% NaCl) ko-injiziert war. Denn dies ist eine geeignete Behandlung, die die Barriere des Perineuriums öffnet. Der Effekt wurde von Naloxon, einem MOP-Antagonist, gehemmt, was eine spezifische Wirkung via MOP unterstützt. Die Wirkung von Fentanyl, einem lipophilen Opioid, wurde ebenfalls durch die HTS-Behandlung verbessert. Das führt zu unserer Hypothese, dass HTS nicht nur die Schranke öffnet, sondern auch direkt Expression und/oder Funktionalität von axonalen MOP verbessert. Um eine Grundlage für die Untersuchung dieser Hypothese zu schaffen, war das Ziel dieser Arbeit, die axonale MOP bei Versuchstieren unter verschiedenen Bedingungen mit molekularen und morphologischen Methoden zu charaktiersieren. Am Anfang wurden vier verschiedene kommerzielle Antikörper für die Erkennung der MOP getestet. Immunreaktionen mit diesen Antikörpern wiesen spezifisch MOP in dem Hippocampus und in der Amygdala nach, während im peripheren Nervensystem die Immunreaktion veränderliche Markierungsmuster und weniger Spezifität mit einem ungünstigeren Signal-zu-Hintergund Verhältnis zeigte. Die Doppelmarkierung mit calcitonin gene-related peptide (CGRP), einem Neuropeptid, das in sensorischen Fasern exprimiert ist, mit dem Marker für non-compacted Myelin S100 oder mit dem neuronalen Marker PGP9.5, bestätigte ein reproduzierbares Färbemuster außerhalb sensorischer Nervenfasern. Deshalb war keiner dieser Antikörper geeignet. Mit der Anwendung eines neuen kommerziell erhältlichen monoklonalen Kaninchen Antikörpers (RabMAb) gegen MOP sowie gentechnisch veränderten Mäusen, bei denen das fluoreszierende Protein mCherry in das C-terminale Ende von MOP eingefügt wurde (MOP-mcherry knock-in Mäusen), wurden MOP und das MOP-Fusionprotein im CGRP+ im Ischiasnerv und Fasernbündeln durch Immunfluoreszenzmarkierung von Ratten und Mäuse bestätigt. Die immunelectron-mikroscopische Analyse zeigte MOP/MOP-mcherry im Zytoplasma und der Membran unmyelinizierter Axone, die in Remak Bündlen organisiert sind. Beide Antikörper erkannten Banden in richtige Größe in Western Blot in ZNS und mehrere größere Banden in PNS. Quantitative Analysen 60 min nach HTS-Behandlung zeigten keine Veränderung in MOP mRNA in dem Ischiasnerv und Hinterwurzelganglion sowie keine Veränderung in der MOP-Immunreaktivität in dem Ischiasnerv. Daher müssen noch weitere Ursachen für die verbesserte Wirkung von Opioiden am Nerven nach HTS in Betracht gezogen werden. Zusammenfassend konnte diese Studie die MOP-Proteins in intakten sensorischen Axonen des N. ischiadicus der Ratte und Maus eindeutig nachweisen. Axonale MOPs könnten über Kaliumkanäle oder Calciumkanäle in den Verhaltenstests bei naiven Tiere antinozizeptiv wirken. Da die HTS Behandlung zu keiner deutlichen Steigerung von axonalem MOP-Protein führen kann, sollten anderen Mechanismen wie MOP-Recycling oder Veränderung der intrazellulären Singaltransduktion untersucht werden, die die Funktionalität von MOP erhöhen. Zukünftige Studien ferner den genauen Mechanismus klären, wie axonal Opioide antinozizeptiv wirken, um so die Behandlung von Schmerzen mit Regionalanalgesie weiter zu verbessert. KW - opioid receptors KW - nociceptors KW - regional analgesia KW - Opioide KW - Rezeptor KW - Nozizeptor KW - Lokalanästhesie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128866 ER - TY - THES A1 - Projahn, Holger T1 - Synthese, Stereochemie und pharmakologische Charakterisierung von 3,7-Diazabicyclo[3.3.1]nonan Derivaten als selektive kappa-Agonisten T1 - Synthesis, stereochemistry and pharmacological characterization of 3,7-diazabicyclo[3.3.1]nonane derivates as selective kappa-agonists N2 - In der vorliegenden Arbeit wird die Synthese von verschiedenen bicyclischen Substanzklassen gemäß des folgenden Syntheseschemas beschrieben. Es wurden verschiedene 2,4-di-(2-pyridyl)- oder 2,4-di-(3-fluorphenyl)-substituierte 9-Oxo-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarbonsäurediester (9-Oxo-BNDS: 21-25, 27-55) synthetisiert, welche 1. teilweise als Vorstufen zur Synthese von 1,5-Di-(hydroxymethyl)-3,7-diazabicyclo[3.3.1]nonan-9-olen (Triole: 56-65) eingesetzt wurden, 2. teilweise als Vorstufen zur Synthese von 9-Hydroxy-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarbonsäuredimethylestern (9-OH-BNDS: 66-69) verwendet wurden, die ihrerseits zu 9-O-Acyl-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarbonsäuredimethylestern (9-OAc-BNDS: 70-76) umgesetzt wurden oder 3. als Vorstufe zur Synthese der 9-Oxo-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarbonsäure 26 dienten. Die 9-Oxo-BNDS wurden aus den kommerziell erhältlichen Aceton-1,3-dicarbonsäuredimethyl- (ADS-Me), -ethylester (ADS-Et) oder den ADS 1-3 synthetisiert, die ihrerseits ausgehend von ADS-Me und den entsprechenden Alkoholen durch Umesterung hervorgehen. Die ADS wurden durch eine Mannich-Kondensation mit zwei Äquivalenten eines aromatischen Aldehyds und einem Äquivalent eines primären Amins in MeOH zu den entsprechenden 4-Piperidon-3,5-dicarbonsäureestern (PDS: 4-20) umgesetzt, die wiederum ebenfalls durch eine Mannich-Kondensation mit zwei Äquivalenten Formaldehyd und einem Äquivalent eines primären Amins in THF oder Aceton zu den entsprechenden 9-Oxo-BNDS reagieren. Dieser Syntheseschritt wurde hinsichtlich Ausbeute, Vereinfachung und Beschleunigung der Aufarbeitung optimiert. Die Stereochemie der so erhaltenen 9-Oxo-BNDS, die in Abhängigkeit vom Substitutionsmuster als cis- oder trans-Isomere entstehen, konnte mittels NMR-Spektroskopie aufgeklärt werden. Der 1,5-Dibenzylester 25 konnte durch katalytische Hydrierung mit Pd/C als Katalysator in EtOAc zur freien 1,5-Dicarbonsäure 26 umgesetzt werden. Die Triole 56-62 wurden ausgehend von den 9-Oxo-BNDS HZ2, 3FLB, 21-24, 28, 33 in einer Eintopfsynthese mittels NaBH4 in THF/MeOH durch Reduktion hergestellt. Die N3- und/oder N7-benzyl-substituierten Triole 57-59 wurden mittels katalytischer Hydrierung mit Pd/C als Katalysator in MeOH zu den entsprechenden NH-substituierten Triolen 63-65 umgesetzt. Mit Hilfe von selektiven 1D-NOESY-Messungen konnte die Stereochemie der Triole bezüglich der Stellung der Hydroxygruppe an C9 zugeordnet werden. Die 9-OH-BNDS 66-69 wurden durch Reduktion der entsprechenden 9-Oxo-BNDS HZ2, 3FLB, 32, 33 mit Na(CN)BH3 in MeOH synthetisiert. Die Reduktion verläuft nicht stereoselektiv, sodass die dabei entstehenden 9-OH-BNDS als Diastereomerengemische durch syn/anti-Isomerie der C9-OH-Gruppe anfallen. Das Diastereomerengemisch 66 konnte durch präparative Säulenchromatographie in die beiden reinen Isomere 66a (anti) und 66b (syn) getrennt werden. Das Gemisch 67 konnte durch Entwicklung einer HPLC-Methode und anschließender Übertragung auf ein Flashchromatographiesystem präparativ in die diastereomerenreinen Isomere 67a (anti) und 67b (syn) getrennt werden. Die stereochemische Zuordnung der Konfiguration an C9 wurde durch selektive 1D-NOESY-Messungen erreicht. Die Synthese der 9-OAc-BNDS 70-76 erfolgte durch Umsetzen des entsprechenden 9-OH-BNDS 66a, 67a, 67-69 mit einer äquimolaren Menge eines entsprechenden Carbonsäurechlorids und DBU als Hilfsbase in CHCl3. Im Fall der Synthese von Verbindung 76 musste das eingesetzte Decanoylchlorid mit Zinkstaub aktiviert werden. Die Zuordnung der Stereochemie der so erhaltenen Verbindungen basiert auf selektiven 1D-NOESY-Messungen. Die Verbindungen 25-27, 31, 56, 60, 63-66, 66a/b, 67, 67a/b, 70a, 71, 71a wurden auf pharmakologische Affinität zum kappa-Opioidrezeptor (OR) untersucht. Dadurch konnten die Verbindungen 71, 71a und 67a/b als hochaffine Liganden des kappa-OR identifizert werden. Durch die qualitative Analyse der Struktur-Wirkungs-Beziehungen, die auf dem Vergleich der pharmakologischen Daten dieser Arbeit und vorangegangener Arbeiten basiert, konnten folgende Anforderungen an selektive Liganden des kappa-OR mit 3,7-Diazabicyclo[3.3.1]nonan-Grundgerüst ermittelt werden: 1. Das Grundgerüst sollte an Position 2/4 mit 2-Pyridylresten substituiert sein. 2. An Position N3 und N7 dürfen keine Substituenten angebracht sein, die größer als ein Methylrest sind. 3. Das Molekül sollte an Position 1/5 mit Methylestergruppen versehen sein. 4. Der 3,7-Diazabicyclus kann an Position 9 eine -OH, -OAc oder möglicher-weise auch entsprechende, sterisch anspruchsvollere Funktionen besitzen. 5. Die Stellung des Substituenten an Position 9 sollte vorzugsweise anti-konfiguriert sein, bezogen auf den höher substituierten Piperidinring. N2 - The aim of the present work was the synthesis of several bicyclic compound classes as described in the following synthetic pathway. Various 2,4-di-(2-pyridyl)- or 2,4-di-(3-fluorphenyl)-substituted 9-oxo-3,7-diazabicyclo[3.3.1]-nonan-1,5-dicarboxylates (9-Oxo-BNDS: 21-25, 27-55) have been synthesized, which 1. were partially used as templates for the synthesis of 1,5-di-(hydroxymethyl)-3,7-diazabicyclo[3.3.1]nonan-9-oles (trioles: 56-65), 2. were partially used as starting compounds for the synthesis of dimethyl-9-hydroxy-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarboxylates (9-OH-BNDS: 66-69), which in turn were used for the preparation of dimethyl-9-O-acyl-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarboxylates (9-OAc-BNDS: 70-76), 3. served as starting compound for the synthesis of the 9-oxo-3,7-diazabicyclo-[3.3.1]nonan-1,5-dicarboxylic acid 26. The 9-Oxo-BNDS were prepared starting from the commercially available di-methyl- (ADS-Me) or diethylacetone-1,3-dicarboxylate (ADS-Et) or the ADS 1-3, which themselves were synthesized by transesterification of ADS-ME with the corresponding alcohols. The ADS were converted to the respective 4-piperidon-3,5-dicarboxylates (PDS: 4-20) by means of a Mannich-condensation with two equivalents of an aromatic aldehyde and one equivalent of a primary amine in MeOH as a solvent. The PDS were subjected to a second Mannich-condensation with two equivalents of formaldehyde and one equivalent of a primary amine in THF or acetone to form the corresponding 9-Oxo-BNDS. This step was optimized with respect to the yields, simplification and acceleration of the refurbishment. The stereochemistry of the so achieved 9-Oxo-BNDS, which can emerge as cis- or trans-isomers dependent on their substitution pattern, was elucidated by means of NMR-spectroscopy. The dibenzylcarboxylate 25 could be converted to the free dicarboxylic acid 26 by means of catalytic hydrogenation with Pd/C as catalyst in EtOAc as solvent. The trioles 56-62 were synthesized starting from the the 9-Oxo-BNDS HZ2, 3FLB, 21-24, 28, 33 in a one-pot-reduction-step by means of NaBH4 in THF/MeOH. The N3- and/or N7-benzyl-substituted trioles 57-59 were converted to the respective NH-substituted trioles 63-65 by catalytic hydrogenation with Pd/C in MeOH. The assignment of the hydroxy-group at C9 was achieved via selective 1D-NOESY measurements. The 9-OH-BNDS 66-69 were perpared by reduction of of the appropriate 9-Oxo-BNDS HZ2, 3FLB, 32, 33 with Na(CN)BH3 in MeOH. The reduction does not proceed in a stereoselective manner, which in consequence leads to the isolation of syn/anti-isomers with respect to the hydroxygroup at C9. The isomeric mixture 66 could be resolved into both pure isomers 66a (anti) and 66b (syn) by means of preparative column chromatography. The isomeric mixture 67 was separated in order to obtain the pure isomers 67a (anti) and 67b (syn) by preparative flash-chromatography. The stereochemical assignment of the hydroxygroup at C9 was accomplished by selective 1D-NOESY measurements. The synthesis of the 9-OAc-BNDS 70-76 was carried out by reaction of the respective 9-OH-BNDS 66a, 67a, 67-69 with an equimolar amount of the congruent acylchloride and DBU as an auxilary base in CHCl3. In the case of compound 76 the deployed decanoylchloride had to be activated with zinc dust. The stereochemical assignment of the so obtained compounds is based on selective 1D-NOESY measurements. The compounds 25-27, 31, 56, 60, 63-66, 66a/b, 67, 67a/b, 70a, 71, 71a were investigated with respect to their pharmacological affinity to the kappa-opioid receptor (OR). Compounds 71, 71a and 67a/b were identified to be highly affine ligands to the kappa-OR. By means of the analysis of structure-affinity-relationships, which are based upon the comparison of the pharmacological data of the present work and previous findings, the following prerequisites for high affinity towards the kappa-OR were derived for compounds bearing the 3,7-diazabicyclo[3.3.1]nonan-skeleton: 1. The skeleton at position 2/4 should be substituted by 2-pyridyl moieties. 2. No substituents being larger than a methyl-group should be attached to the nitrogens N3 and N7. 3. The molecule should carry a methyl carboxylate at positions 1/5. 4. The 3,7-diazabicycle may possess a -OH, -OAc or probably a respective, even sterically larger substituent at position 9. 5. The orientation of the substituent at position 9 should be preferably of anti-configuration according to the higher substituted piperidine ring. KW - Opioide KW - Rezeptor KW - Diazabicyclononanone KW - Chemische Synthese KW - Stereochemie KW - Synthese KW - Pharmakologie KW - Opioide KW - Kappa KW - Diazabicyclononan KW - Synthesis KW - Pharmacology KW - Opioids KW - Kappa KW - Diazabicyclononane Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14072 ER -