TY - THES A1 - Götz, Silvia T1 - Zuo1 - ein neues G-Quadruplex-bindendes Protein in \(Saccharomyces\) \(cerevisiae\) T1 - Zuo1 - a novel G-quadruplex binding protein in \(Saccharomyces\) \(cerevisiae\) N2 - G-Quadruplex (G4)-Strukturen sind sehr stabile und polymorphe DNA und RNA Sekundärstrukturen mit einem konservierten Guanin-reichen Sequenzmotiv (G4-Motiv). Sie bestehen aus übereinander gestapelten planaren G-Quartetts, in denen je vier Guanine durch Wasserstoffbrückenbindungen zusammengehalten werden. Da G4-Motive in Eukaryoten an bestimmten Stellen im Genom angereichert vorkommen, wird angenommen, dass die Funktion von G4-Strukturen darin besteht, biologische Prozesse positiv oder negativ zu regulieren. Aufgrund der hohen thermodynamischen Stabilität von G4 Strukturen ist davon auszugehen, dass Proteine in die Faltung, Stabilisierung und Entfaltung dieser Nukleinsäure-Strukturen regulatorisch involviert sind. Bis heute wurden viele Proteine in der Literatur beschrieben, die G4-Strukturen entwinden können. Jedoch konnten bisher nur wenige Proteine identifiziert werden, die in vivo die Faltung fördern oder G4-Strukturen stabilisieren. Durch Yeast One-Hybrid (Y1H)-Screenings habe ich Zuo1 als neues G4 bindendes Protein identifiziert. In vitro Analysen bestätigten diese Interaktion und es stellte sich heraus, dass Zuo1 G4-Strukturen stabilisiert. Übereinstimmend mit den in vitro Daten konnte gezeigt werden, dass Zuo1 signifikant an G4-Motive im Genom von Saccharomyces ceresivisiae bindet. Genomweit überlappen G4-Motive, an die Zuo1 bindet, mit Stellen, an denen die DNA Replikation zum Stillstand kommt und vermehrt DNA Schäden vorkommen. Diese Ergebnisse legen nahe, dass Zuo1 eine Funktion während der DNA Reparatur oder in Zusammenhang mit dem Vorankommen der DNA Replikationsgabel hat, indem G4-Strukturen stabilisiert werden. Diese Hypothese wird außerdem durch genetische Experimente gestützt, wonach in Abwesenheit von Zuo1 die Genominstabilität zunimmt. Aufgrund dieser Daten war es möglich ein Model zu entwickeln, bei dem Zuo1 während der S-Phase G4-Strukturen bindet und stabilisiert wodurch die DNA Replikation blockiert wird. Diese Interaktion findet neben Stellen schadhafter DNA statt und unterstützt somit DNA Reparatur-Prozesse wie beispielsweise die Nukleotidexzisionsreparatur. Als weiteres potentielles G4-bindendes Protein wurde Slx9 in Y1H-Screenings identifiziert. In vitro Experimente zeigten zwar, dass Slx9 mit höherer Affinität an G4-Strukturen bindet im Vergleich zu anderen getesteten DNA Konformationen, jedoch wurde in S. cerevisiae genomweit keine signifikante Bindung an G4-Motive festgestellt. N2 - G-quadruplex (G4) structures are stable and polymorphic DNA and RNA secondary structures with a conserved Guanine-rich sequence motif (G4 motif). They consist of stacked planar G quartets that are held together by hydrogen bondings between four guanines. Because G4 motifs are enriched at specific sites in eukaryotic genomes, G4 structures are suggested to act as functional tools in the cell to regulate biological processes in a positive or negative manner. Considering the high thermodynamic stability of G4 structures it has been suggested that proteins regulate the formation, stabilization, and unfolding of this nucleic acid based structure. Up to now many proteins that unwind G4 structures have been described in the literature. But so far only a few proteins were identified that support the formation or stabilize G4 structures in vivo. Using yeast one-hybrid screenings, I identified Zuo1 as a novel G4-binding protein. In vitro studies confirmed this interaction and revealed that Zuo1 stabilizes G4 structures. In agreement with in vitro data I could show that Zuo1 binds significantly to G4 motifs in the S. cerevisiae genome. Genome-wide G4 motifs which are bound by Zuo1 overlap sites where DNA replication stalls and DNA damage is elevated. These results suggest that Zuo1 functions during the control of DNA repair or DNA replication fork progression by stabilization of G4 structures. This hypothesis is further supported by genetic assays showing that in the absence of Zuo1 genome instability is increased. On the basis of these data we propose a model in which Zuo1 binds and stabilizes G4 structures during S phase and by this block DNA replication. This interaction takes place near DNA damage sites and supports DNA repair processes such as nucleotide excision repair. Additionally, Slx9 was identified in Y1H screenings as a potential G4-binding protein. In vitro analyses showed that Slx9 interacts with higher affinity with G4 structures compared to other tested DNA conformations. However, no significant overlap with G4 motifs could be observed genome-wide in S. cerevisiae. KW - Saccharomyces cerevisiae KW - DNS-Bindungsproteine KW - DNS-Reparatur KW - DNA secondary structure KW - DNA Sekundärstruktur KW - Sekundärstruktur KW - Bäckerhefe Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152158 ER - TY - THES A1 - Keller, Alexander T1 - Secondary (and tertiary) structure of the ITS2 and its application for phylogenetic tree reconstructions and species identification T1 - Sekundär- und Tertiärstruktur der ITS2 und Anwendung für phylogenetische Baumberechnungen und Arteerkennung N2 - Biodiversity may be investigated and explored by the means of genetic sequence information and molecular phylogenetics. Yet, with ribosomal genes, information for phylogenetic studies may not only be retained from the primary sequence, but also from the secondary structure. Software that is able to cope with two dimensional data and designed to answer taxonomic questions has been recently developed and published as a new scientific pipeline. This thesis is concerned with expanding this pipeline by a tool that facialiates the annotation of a ribosomal region, namely the ITS2. We were also able to show that this states a crucial step for secondary structure phylogenetics and for data allocation of the ITS2-database. This resulting freely available tool determines high quality annotations. In a further study, the complete phylogenetic pipeline has been evaluated on a theoretical basis in a comprehensive simulation study. We were able to show that both, the accuracy and the robustness of phylogenetic trees are largely improved by the approach. The second major part of this thesis concentrates on case studies that applied this pipeline to resolve questions in taxonomy and ecology. We were able to determine several independent phylogenies within the green algae that further corroborate the idea that secondary structures improve the obtainable phylogenetic signal, but now from a biological perspective. This approach was applicable in studies on the species and genus level, but due to the conservation of the secondary structure also for investigations on the deeper level of taxonomy. An additional case study with blue butterflies indicates that this approach is not restricted to plants, but may also be used for metazoan phylogenies. The importance of high quality phylogenetic trees is indicated by two ecological studies that have been conducted. By integrating secondary structure phylogenetics, we were able to answer questions about the evolution of ant-plant interactions and of communities of bacteria residing on different plant tissues. Finally, we speculate how phylogenetic methods with RNA may be further enhanced by integration of the third dimension. This has been a speculative idea that was supplemented with a small phylogenetic example, however it shows that the great potential of structural phylogenetics has not been fully exploited yet. Altogether, this thesis comprises aspects of several different biological disciplines, which are evolutionary biology and biodiversity research, community and invasion ecology as well as molecular and structural biology. Further, it is complemented by statistical approaches and development of informatical software. All these different research areas are combined by the means of bioinformatics as the central connective link into one comprehensive thesis. N2 - Biologische Diversität kann mit Hilfe molekularer Sequenzinformation und phylogenetischen Methoden erforscht und erfasst werden. Bei ribosomalen Genen kann man jedoch wertvolle Information nicht nur aus der Primärsequenz beziehen, sondern auch aus der Sekundärstruktur. In den letzen Jahren wurde Software entwickelt, die solche Daten für taxonomische Fragestellung verwerten kann. Diese Arbeit beschäftigt sich mit einer Erweiterung dieser Methodik durch eine Software-Anwendung, die die Annotation des ribosomalen Genes ITS2 deutlich vereinfacht. Mit dieser Studie konnten wir zeigen, dass dies einen entscheidenden Schritt der Sequenz-Struktur-Phylogenie und der Datenerfassung der ITS2-Datenbank darstellt. Die daraus resultierende und frei verfügbare Anwendung ermöglicht Annotationen von hoher Güte. In einer weiteren Studie wurde mittels Simulationen der gesamte Arbeitsfluß der Sequenz-Struktur Phylogenie auf theoretischer Ebene evaluiert. Dabei zeigte sich, dass sich sowohl die Genauigkeit, als auch die Robustheit von phylogenetischen Stammbäumen durch diesen Ansatz deutlich verbessern. Der zweite große Teil der Arbeit befasst sich mit Fallbeispielen, in denen dieser Arbeitsfluß zur Aufklärung von taxomonischen and ökologischen Fragestellungen Anwendung fand. In diesem Rahmen konnten wir mehrere und voneinander unabhängige Phylogenien ermitteln, welche die theoretischen Ergebnisse einer Verbesserung phylogenetischer Bäume auch von biologischer Seite aus bekräftigen. Der Ansatz war anwendbar in sehr feinskaligen Studien auf Art bzw. Gattungsniveau, aber durch die starke Konservierung der Sekundärstruktur auch an sehr weit von einander entfernten taxonomischen Gruppen. Eine weitere Studie, die sich mit der Phylogenie von Bläulingen befasst, zeigt deutlich, dass dieser Ansatz nicht nur für Fragestellungen bei Pflanzen, sondern auch im Tierreich angewandt werden kann. Die Bedeutung von qualitativ hochwertigen Stammbäumen auch für andere Fachbereiche wird an zwei unserer ökologischen Studien deutlich: Mit Hinzunahme von Sekundärstruktur war es uns möglich Fragestellungen über die Evolution von Ameisen-Pflanzen Interaktionen sowie über ökologische Gemeinschaften von Bakterien auf verschiedenen Pflanzenteilen zu beantworten. Zuletzt gehen wir spekulativ auf die Frage ein, wie Strukturphylogenie um die dritte Dimension erweitert werden kann. Dies bleibt zwar spekulativ und wurde nur um ein kleines Fallbeispiel ergänzt, jedoch zeigt sich deutlich, dass das Potential von Strukturphylogenie noch nicht erschöpft ist. Insgesamt befasst sich diese Arbeit mit Aspekten aus verschiedenen biologischen Disziplinen: Evolutionsbiologie und Biodiversitätsforschung, sowie Gemeinschafts- und Invasionsökologie, aber auch Molekular- und Strukturbiologie. Dies wurde ergänzt durch statistische Ansätze und Entwicklung von informatischer Software. Diese verschiedenen Forschungsrichtungen wurden mit Hilfe der Bioinformatik als zentrales Bindeglied vereint. KW - Phylogenie KW - Evolution KW - Sekundärstruktur KW - DNS-Sequenz KW - Algen KW - Ribosomale RNS KW - rRNA KW - secondary structure KW - phylogeny evolution KW - sequence Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56151 ER - TY - THES A1 - Hoffmann, Markus Fritz Heinrich T1 - Induktion von Sekundärstrukturen durch den Einbau von Alanyl-PNA in Peptide und Proteine T1 - Induction of secondary structures in peptides and proteines by incorporation of alanyl-PNA N2 - Die Aktivität von Biooligomeren wird wesentlich beeinflusst von deren molekularer Struktur bzw. Konformation. Eine Einflussnahme auf die Struktur sollte deswegen auch mit einer Aktivitätsveränderung einhergehen, ein „Schalten“ von Struktur somit ein „Schalten“ von Aktivität nach sich ziehen. Alanyl-PNA ist ein Oligopeptid alternierender Konfiguration mit Nukleobasen in β-Position der Alanyl-Einheiten, das durch Wasserstoffbrückenbildung und π-Stacking mit einem komplementären Strang Paarungsduplexe mit β-faltblattartiger linearer Struktur eingeht. Der Einbau eines Alanyl-PNA-Stranges in ein Peptid oder Protein und Zugabe des korrespondierenden Gegenstranges sollte zu einer lokalen Induktion eines β-Faltblattes führen und strukturelle Veränderungen im Gesamtpeptid hervorrufen. Es kann dann von einem molekularen Schalter gesprochen werden. Im Rahmen dieser Arbeit wurde eine vom cyclischen Peptidantibiotikum Gramicidin S abgeleitete 18mer-Peptid-Alanyl-PNA-Chimäre 20 mit eingebautem Alanyl-PNA-Pentamer dargestellt. Es konnte mittels temperaturabhängiger UV-Spektroskopie gezeigt werden, dass sich bei Zugabe des komplementären Gegenstranges nichtkovalente Duplexe bilden. CD-spektroskopische Untersuchungen dieses Dimers lieferten keine eindeutigen Beweise für das vorliegen eines β-Faltblattes. Es konnte anhand des humanen Interleukins 8 gezeigt werden, dass der Einbau von Alanyl-PNA durch die Technik der native chemical ligation in größere Peptide möglich ist. Hierfür wurde der N-terminale Thioester 31 des humanen Interleukins hIL8(1-55) durch Expression des Fusionsproteines in E.coli und Expressed Protein Ligation dargestellt. Nach Umsetzung des Thioesters 31 mit einem Alanyl-PNA-Peptid-Hybrid 29, das N-terminal mit einem freien Cystein substituiert ist, wurde durch native chemical ligation ein von dem humanen Interleukin 8 abgeleitetes 77 Aminosäuren enthaltendes Peptid 30 mit eingebauter Alanyl-PNA erhalten. Darüber hinaus wurden mit keinem, einem oder zwei Lysinen substituierte Alanyl-PNA-Hexamere dargestellt und Strukturuntersuchungen unterworfen. Es konnte mittels temperaturabhängiger UV-Spektroskopie gezeigt werden, dass der Einbau zweier Lysine sowohl die Löslichkeit als auch die Bildungskinetik verändert, die Stabilität (Tm-Wert) der Duplexe jedoch unverändert lässt. Diese Hexamere wurden Kristallisationsversuchen unterworfen, bisher konnten noch keine Kristalle erhalten werden. Basierend auf den im Rahmen dieser Arbeit erhaltenen Ergebnissen sollte es in Zukunft darüber hinaus möglich sein, genaueren Aufschluss über die Struktur von Alanyl-PNA zu erhalten. Die Erhöhung der Löslichkeit von Alanyl-PNA durch Einbau zweier Lysine ermöglicht nicht nur weitere Kristallisationsversuche, sondern man gelangt auch in Konzentrationsbereiche, in denen NMR-Untersuchungen an Alanyl-PNA möglich werden, die bisher aufgrund zu schlechter Löslichkeit zu keinen zufrieden stellenden Ergebnissen geführt haben. Durch weitere Optimierung der native chemical ligation und Bereitstellung größerer Mengen von Interleukin 8 Derivaten mit eingebauter Alanyl-PNA sollte es in Zukunft möglich sein, den Einfluss des komplementären Alanyl-PNA-Stranges auf die Struktur des Gesamtsystems und dessen biologischer Aktivität zu untersuchen. Durch Variation und Optimierung der Sequenz und des örtlichen Einbaus der Alanyl-PNA kann so vielleicht das Fernziel eines molekularen strukturellen Schalters für Peptide bzw. Proteine erreicht werden. Ebenso ist es denkbar, dass durch den Einbau von Alanyl-PNA in zwei verschiedene Peptide bzw. Proteine nichtkovalente Protein-Protein-Komplexe erhalten werden können. N2 - Activity and properties of biooligomers depend mainly on their molecular structure and conformation. Changing structure causes also a change of activity. Therefore, “switching” structure results in “switching” activity. Alanyl-PNA is an oligopeptide consisting of amino acids with alternating configuration with nucleobases attached to the β-position of an alanyl unit. Addition of a complementary peptide strand induces a β-sheet like conformation in the backbone of the duplex by hydrogen bonding and π-stacking . Incorporation of alanyl-PNA into a peptide or protein and addition of a complementary sequence should induce a β-sheet like structure and produce structural changes in the entire system. For this effect the term molecular switch can be used. In this work a peptide-alanyl-PNA chimera 20 consisting of a sequence of 18 amino acids, which was derived from the cyclic antibiotic Gramicidin S, has been synthesized. It contained a terminal alanyl-PNA pentamere. Using temperature dependent UV-spectroscopy it could be proven that addition of the complementary strand led to noncovalent duplexes. Investigations by CD-spectroscopy did not give clear evidence for the existence of a β-sheet. To accomplish the incorporation of alanyl-PNA into larger peptides the techique native chemical ligation has been applied. Alanyl-PNA has been incorporated into the 77 amino acids containing peptide human interleukine 8 (hIL8). The N-terminal thioester hIL8(1-55) 31 was expressed by a fusion-protein in E.coli and worked up by Expressed Protein Ligation. After reaction of the thioester 31 with an alanyl-PNA-peptide hybrid 29, N-terminally substituted with a free cysteine, a new analogue 30 of hIL-8 could be obtained by native chemical ligation. Furthermore, alanyl-PNA hexamers containing up to two lysines have been synthesized and subjected to structural examinations. Using temperature dependent UV-spectroscopy it could be shown that the incorporation of two lysines not only increased the solubility of the oligomers substantially but also had strong influence on the kinetics of the duplex formation, whereas the stability of the pairing complex (defined by the Tm value) did not change. Attempts to crystallize these hexamers have not been successful up to the present. On the basis of these results it should be possible to obtain in the future more detailed information about the structure of alanyl-PNA. Due to the poor solubility, previous NMR examinations did not give satisfying results. The increase in solubility by addition of a second lysine to alanyl-PNA will allow in future further crystallisation experiments and more promising NMR investigations. By optimization of the native chemical ligation and supply of larger amounts of interleukine 8 derivatives with incorporated alanyl-PNA it should be possible to examine the influence of a complementary alanyl-PNA strand on the structure of the entire system and its biological activity. By variation and optimization of the sequence and the local incorporation of alanyl-PNA moieties the objective of a molecular switch for peptides and proteins might be reached. The incorporation of alanyl-PNA into two different peptides or proteins might also result in the formation of noncovalent protein-protein-complexes mediated by hydrogen bonding. KW - Peptide KW - Proteine KW - Sekundärstruktur KW - Peptide KW - molekularer Schalter KW - PNA KW - Sekundärstrukturen KW - peptides KW - molecular switches KW - PNA KW - secondary structures Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6308 ER - TY - THES A1 - Petry, Renate T1 - Spektroskopische Strukturanalytik synthetischer Polypeptide T1 - Structural Analysis of Synthetic Polypeptides by Optical Spectroscopy Methods N2 - In der vorliegenden Arbeit wurden zwei spektroskopische Methoden (Raman- und Circulardichroismus-Spektroskopie) und die Kernspinresonanz zur Untersuchung der Sekundärstruktur von synthetischen Polypeptiden eingesetzt. Dabei wurden die Struktur-Funktions-Beziehungen der dritten extrazellulären Schleife des Gonadotropin-freisetzenden Rezeptors (GnRH-R) untersucht. Die spektroskopischen Ergebnisse belegten, dass die zuvor getroffene Aussage über eine vorhandene helikale Struktur revidiert werden musste. Die Strukturanalysen mit Hilfe der CD-, Raman- und 2D NMR-Experimente an zwei Serien von Polypeptiden lieferten Aussagen über die Sekundärstruktur. Insbesondere die Raman-Untersuchungen in Verbindung mit einer statistischen Datenanalyse lieferten detaillierte Information über subtile Konformationsänderungen, die einerseits durch die Addition und andererseits durch die Substitution einzelner Aminosäuren in den synthetischen Polypeptiden ausgelöst wurden. Anhand der ausgewählten Raman-Linien konnte nachgewiesen werden, dass sowohl die Änderungen der Polypeptidkettenlänge als auch die Änderung der Polypeptidsequenzen mit den beobachteten Intensitäten der Raman-Linien korreliert sind. KW - Synthetische Polypeptide KW - Strukturaufklärung KW - Raman-Spektroskopie KW - Synthetische Polypeptide KW - Sekundärstruktur KW - Proteindesign KW - Raman-Spektroskopie KW - Prolin KW - G-Protein-gekoppelter Rezeptor KW - synthetic polypeptides KW - secondary structure KW - protein design KW - Raman spectroscopy KW - proline KW - G protein-coupled receptor Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-664 ER -