TY - JOUR A1 - Emmert, M. A1 - Witzel, P. A1 - Heinrich, D. T1 - Challenges in tissue engineering - towards cell control inside artificial scaffolds JF - Soft Matter N2 - Control of living cells is vital for the survival of organisms. Each cell inside an organism is exposed to diverse external mechano-chemical cues, all coordinated in a spatio-temporal pattern triggering individual cell functions. This complex interplay between external chemical cues and mechanical 3D environments is translated into intracellular signaling loops. Here, we describe how external mechano-chemical cues control cell functions, especially cell migration, and influence intracellular information transport. In particular, this work focuses on the quantitative analysis of (1) intracellular vesicle transport to understand intracellular state changes in response to external cues, (2) cellular sensing of external chemotactic cues, and (3) the cells' ability to migrate in 3D structured environments, artificially fabricated to mimic the 3D environment of tissue in the human body. KW - chemotaxis KW - intracellular transport KW - cytoskeleton dynamics KW - adhesion KW - diffusion Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191341 VL - 12 IS - 19 ER - TY - JOUR A1 - Jesaitis, A. J. A1 - Klotz, Karl-Norbert T1 - Cytoskeletal regulation of chemotactic receptors: Molecular complexation of N-formyl peptide receptors with G proteins and actin N2 - Signal transduction via receptors for N-formylmethionyl peptide chemoattractants (FPR) on human neutrophils is a highly regulated process. It involves direct interaction of receptors with heterotrimeric G-proteins and may be under thc control of cytoskeletal clemcnts. Evidencc exists suggesting that thc cytoskeleton and/or the membrane ske1eton determines the distribution of FPR in the plane of the plasma membrane, thus controlling FPR accessibility to different protcins in functionally distinct membrane domains. In desensitized cells, FPR are restricted to domains which are depleted of G proteins but enriched in cytoskeletal proteins such as actin and fodrin. Thus, the G protein signal transduction partners of FPR become inacccssible to the agonist-occupied receptor, preventing cell activation. We are investigating the molecular basis for the interaction of FPR with the membrane skeleton, and our results suggest that FPR, and possibly other receptors, may directly bind to cytoskeletal proteins such as actin. KW - Immunologie KW - chemotaxis KW - formyl peptides KW - receptors KW - actin KW - G proteins KW - cytoskeleton KW - membrane skeleton Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79673 ER - TY - THES A1 - Halscheidt, Anja T1 - Das RpoS-Protein aus Vibrio cholerae : Funktionsanalyse und Charakterisierung der Proteolyse-Kaskade T1 - The RpoS protein of Vibrio cholerae : Functional analysis and characterization of the proteolysis cascade N2 - In der vorliegenden Arbeit wurde zunächst die Konservierung bekannter RpoS-assoziierter Funktionen für das V. cholerae Homolog untersucht. Dabei ergab die phänotypische Analyse der rpoS-Deletionsmutante, dass analog zu der Bedeutung als Regulator des Stationärphasen-Wachstums in E. coli, definierte Zelldichte-abhängige Eigenschaften in V. cholerae gleichermaßen der Kontrolle von RpoS unterliegen. In weiterführenden Experimenten konnte daraufhin die Konservierung der entsprechenden Promotorstrukturen über die funktionelle Komplementierung rpoS-abhängiger Gene durch das jeweils speziesfremde Protein aufgedeckt werden. Dahingegen konnte die Bedeutung von RpoS bei der Ausprägung der generellen Stress-Resistenz u. a. in E. coli für das V. cholerae Homolog über den gewählten experimentellen Ansatz nicht belegt werden. So wurden in Survival-Assays für keine der getesteten Stress-Bedingungen signifikante Unterschiede zwischen rpoS-Mutante und Wildtyp ermittelt. Die in E. coli gezeigte intrazelluläre Anreicherung des Sigmafaktors unter diversen Stress-Situationen konnte ebenfalls nicht nachgewiesen werden. Hinsichtlich der potentiellen Stellung von RpoS als globaler Regulator für Virulenz-assoziierte Gene, unterstützen und ergänzen die Ergebnisse der vorliegenden Arbeit die gegenwärtige Theorie, wonach RpoS das Ablösen der V. cholerae Zellen vom Darm-Epithel fördert. Die postulierte Bedeutung des alternativen Sigmafaktors in der letzten Phase der Pathogenese wurde über die RpoS-abhängige Sekretion der Mukin-degradierenden Protease HapA und die hier unabhängig nachgewiesene Transkriptionskontrolle von Chemotaxis-Genen bestätigt. In E. coli gilt als entscheidender Parameter für die dargelegten RpoS-Funktionen die intrazelluläre Konzentration des Masterregulators. Deshalb war ein weiteres zentrales Thema dieser Arbeit die Regulation des RpoS-Levels in V. cholerae. Neben der Identifizierung von Bedingungen, welche die RpoS-Expression beeinflussen, wurde vorrangig der Mechanismus der Proteolyse analysiert. Dabei wurden als RpoS-degradierende Komponenten in V. cholerae die Homologe des Proteolyse-Targetingfaktors RssB und des Protease-Komplexes ClpXP identifiziert. Die weitere Untersuchung der RpoS-Proteolyse ergab außerdem, dass bestimmte Stress-Signale den Abbau stark verzögern. Interessanterweise resultierten die gleichen Signale jedoch nicht in der Akkumulation von RpoS. Als weiterer Unterschied zu der bekannten Proteolysekaskade in E. coli zeigte sich, dass das V. cholerae Homolog der RssB-aktivierenden Kinase ArcB (FexB) an der RpoS-Proteolyse nicht beteiligt ist. Indessen deuten die Ergebnisse weiterführender Experimente auf den Einfluss der Kinasen CheA-1 und CheA-3 des V. cholerae Chemotaxis-Systems auf die RpoS-Degradation. Aus diesem Grund wurde in der vorliegenden Arbeit ein zu E. coli abweichendes Modell der RpoS-Proteolyse postuliert, in welchem die aktiven CheA-Kinasen den Targetingfaktor RssB phosphorylieren und somit den Abbau einleiten. Die Beteiligung von MCP-Rezeptoren an der Kontrolle der intrazellulären RpoS-Konzentration und damit an der Transkription der Chemotaxisgene selbst, beschreibt erstmalig ein Regulationssystem, wonach innerhalb der Chemotaxis-Kaskade die Rezeptoraktivität wahrscheinlich über einen positiven „Feedback-Loop“ mit der eigenen Gen-Expression gekoppelt ist. Darüber hinaus deutete sich die Beteiligung der ATP-abhängigen Protease Lon an der RpoS-Proteolyse-Kaskade in V. cholerae an. Die Inaktivierung der in E. coli unter Hitzeschock-Bedingungen induzierten Protease resultierte in einem extrem beschleunigten RpoS-Abbau. Ein letztes Teilprojekt dieser Arbeit adressierte die Regulationsmechanismen der V. cholerae Osmostress-Adaptation. Während in E. coli der alternative Sigmafaktor dabei eine zentrale Rolle spielt, konnte die Beteiligung des V. cholerae RpoS an der Osmostress-Regulation jedoch nicht aufgedeckt werden. Dafür ergab die Funktionsanalyse eines neu definierten Osmostress-Sensors (OsmRK) die Kontrolle von ompU durch dieses Zwei-Komponentensystems unter hypertonen Bedingungen. Dieses Ergebnis überraschte, da bislang nur der Virulenzfaktor ToxR als Regulator für das Außenmembranporin beschrieben wurde. Die nachgewiesene ompU-Transkriptionskontrolle durch zwei Regulatoren führte zu der Hypothese eines unbekannten regulativen Netzwerkes, welchem mindestens 52 weitere Gene zugeordnet werden konnten. Insgesamt ist festzuhalten, dass die in dieser Arbeit durchgeführte molekulare Charakterisierung der RpoS-Proteolyse in V. cholerae Beweise für eine mögliche Verbindung zwischen der Transkriptionskontrolle für Motilitäts- und Chemotaxisgene mit der Chemotaxis-Reizwahrnehmung erbrachte. Eine derartige intermolekulare Verknüpfung wurde bislang für keinen anderen Organismus beschrieben und stellt somit eine neue Variante der Signaltransduktion innerhalb der Virulenz-assoziierten Genregulation dar. N2 - In the present work conserved function of RpoS in E. coli was approached for its homolog in V. cholerae. Comprehensive phenotypical analysis of rpoS-mutant and wildtype revealed the involvement of RpoS in growth-phase-dependent processes, according to RpoS-function as stationary phase regulator in E. coli. In further experiments the conservation of RpoS-promoters in both species could be shown. To the contrary, the well-known function of E. coli RpoS as general stress-regulator could not be demonstrate for V. cholerae: By testing several stress conditions in survival assays, no significant differences were determined between rpoS mutant and wildtype. Additionally, the intracellular mode of RpoS accumulation in E. coli due to different stress conditions was also not observed in V. cholerae. Regarding the putative role of RpoS as a regulator for virulence-associated genes, the inhere described data support and complement the current theory of RpoS being involved in mucosal detachment of V. cholerae cells. In E. coli the intracellular concentration of RpoS is a decisive parameter for its described function. So far the homologs of the proteolysis targeting factor RssB and the ATP-depending terminal protease complex ClpXP were identified to be involved in V. cholerae RpoS-proteolysis. Further characterization also unravelled, that various stress signals slow down that degradation. But such conditions did not yield in the RpoS accumulation. Based on these differences to the E. coli dynamics of RpoS-degradation additional investigations were performed to gain more insights into the regulatory path of RpoS degradation in V. cholerae. In E. coli the ArcB kinase ist the sensor kinase for regulating the activity of RssB. In this study fexB was identified as arcB homolog in V. cholerae. But by monitoring the RpoS stability in the corresponding knock-out mutant no effect could be observed. Therefore the ArcB-system is not influencing RpoS stability in V. cholerae. Knowing, that RpoS is a major regulator for motility and chemotaxis in V. cholerae, it was investigated next whether other signal-kinases are involved in RpoS proteolysis. Thereby, the known chemotaxis kinases were tested. Knockout mutants of cheAs and subsequent analysis of RpoS half-life revealed, that cheA-1 and cheA-3 did alter RpoS proteolysis to slow down the degradation, whereas cheA-2 mutant did not. Therefore, it can be postulated, that a different mode of RpoS-proteolysis is operating in V. cholerae in which active CheA-1 and CheA-3 may be responsible for RssB phosphorylation, hence leading to RpoS degradation. That kind of interaction may also include the output signalling of the MCP-receptors regulating CheA kinase activity. Since the cheA genes are also under transcriptional control by RpoS a new regulation system can be postulated, where MCP signal output links transcriptional regulation of motility and chemotaxis via RpoS stability in a “positive feedback loop”. Additionally, data are presented, where the ATP depending protease Lon is also involved in RpoS proteolysis in an inverted manner. Lon, which in E. coli is a heat shock induced protease, seems to recognize and degrade substrates in V. cholerae operating in RpoS degradation in the RssB-depending branch. That phenotype was observed as an accelerated RpoS degradation in a lon background. Finally, the complex regulatory pathway of osmo-regulation was characterized. In E. coli RpoS plays a central role. However, in V. cholerae RpoS could not be identified to participate in osmo-regulation, instead a new defined osmostress-sensor (OsmRK) was characterized. In first analysis, it was found that osmRK knockout mutants showed a deregulated ompU expression under hyperosmotic conditions. Considering, that so far only the well known virulence regulator ToxR was identified to act on the ompU promoter, a novel regulatory network was suggested, which regulates at least further 52 genes. In summary, the components of RpoS proteolysis in V. cholerae were unravelled and characterized. Additionally, evidence could be gathered, which indicates a linkage between transcriptional control of motility and chemotaxis genes and the chemotaxis-signalling pathway. So far, such an regulatory pathway has not been described before and would represent a novel branch of signal transduction in bacteria. KW - V. cholerae KW - RpoS KW - Chemotaxis KW - Virulenz KW - V. cholerae KW - RpoS KW - chemotaxis KW - virulence Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27325 ER - TY - THES A1 - Abt, Marion T1 - Interaktion von Masernviren mit Dendritischen Zellen : Untersuchungen zur Rezeptorbenutzung, Regulation der Chemotaxis und T-Zellkommunikation T1 - Measles Virus and Dendritic Cells: Investigation of Receptor Usage, Chemotaxis and T-Cell Communication N2 - Im Rahmen der vorliegenden Arbeit wurde der Einfluss von MV auf die Expression und Nutzung verschiedener Rezeptoren auf Dendritischen Zellen (DC) untersucht. Dazu wurden DC in vitro aus Monozyten gewonnen und mit IL- 4 und GM-CSF ausdifferenziert. In der Arbeit wurden das Wildtypvirus WTF und der Vakzinestamm ED eingesetzt. Im ersten Teil der Arbeit wurde die Expression der Chemokinrezeptoren 5 (CCR5) und 7 (CCR7) auf MV-infizierten DC-Kulturen sowie das Migrationsverhalten der DC untersucht. Die Expression von CCR5 ist abhängig vom Reifungszustand der DC. Während unreife DC CCR5 exprimieren, verringert sich die Expression im Zuge der Ausreifung, während die Expression von CCR7 induziert wird. In der vorliegenden Arbeit konnte gezeigt werden, dass die MV-Infektion einer DC-Kultur die Expression von CCR5 nicht beeinflusst, obwohl die Expression anderer charakteristischer Reifungsmarker erhöht wird. Weiterhin konnte die Expression von CCR7 durch eine Infektion der DC-Kulturen mit MV nicht induziert werden. Die Ergebnisse der durchgeführten durchflusszytometrischen Analysen zur Rezeptorexpression wurden in Chemotaxis-Assays eingehender untersucht. DC aus MV-infizierten Kulturen zeigten trotz anhaltender CCR5-Expression nur eine geringe Migration in Richtung des CCR5-Liganden CCL-3. Aufgrund der fehlenden CCR7- Expression konnte erwartungsgemäß keine Migration der eingesetzten DC gegenüber dem CCR7-Liganden CCL-19 beobachtet werden. Weiterhin konnten Unterschiede im induzierten Chemokinmuster in MV-infizierten DCKulturen im Vergleich zu LPS-ausgereiften oder mit einer Mockpräparation behandelten DC nachgewiesen werden. Kurz nach der Infektion konnte in MVinfizierten DC-Kulturen eine reduzierte Menge CXCL-8 und CCL-20 sowohl auf mRNA Ebene als auch auf Proteinebene detektiert werden. In weiteren Experimenten konnte eine verminderte Migration von T-Zellen auf Zusammenfassung 152 Zellkulturüberstände aus infizierten DC-Kulturen im Vergleich zu Überständen aus LPS-behandelten DC-Kulturen festgestellt werden. Im zweiten Teil der vorgelegten Arbeit konnte MV als Ligand für das DCspezifische Oberflächenmolekül DC-SIGN (dendritic cell-specific intercellular adhesion molecule (ICAM)-3 grabbing non-integrin) identifiziert werden. Dabei konnte gezeigt werden, dass beide verwendeten Virusstämme an DC-SIGN binden können, DC-SIGN jedoch keinen Eintrittsrezeptor für MV darstellt. Weitere Analysen zeigten, dass DC-SIGN die Infektion, besonders bei geringen Viruskonzentrationen, verstärkt. In erster Linie zeigt die MV-Infektion unreifer DC die Bedeutung von DC-SIGN als Bindungsrezeptor für MV. Die hohe Expression von DC-SIGN auf unreifen DC ermöglicht eine effiziente effektive Infektion dieser Zellen. Auf reifen DC ist der Einfluss von DC-SIGN auf die Effektivität der Infektion der DC deutlich verringert. Im dritten Teil dieser Arbeit wurden die Kontaktzeiten zwischen DC und TZellen in dreidimensionalen Kollagenmatrices untersucht. Dabei wurde eine in etwa doppelt so lange Kontaktzeit zwischen MV-infizierten DC und durch Oxidative Mitogenese veränderten T-Zellen gegenüber LPS-behandelten DC bzw. MV-infizierten und nicht-modifizierten T-Zellen festgestellt. In den parallel durchgeführten Proliferationstests wurde eine reduzierte Proliferation der TZellen beobachtet, die mit MV-infizierten DC kokultiviert wurden. Im Gegensatz zu den kürzeren Kontakten zwischen LPS-behandelten DC und modifizierten TZellen waren die Kontakte zwischen MV-infizierten DC und modifizierten TZellen nicht-stimulatorisch. N2 - This study investigates the influence of measles virus (MV) on the expression and usage of different receptors on dendritic cells (DC) was investigated. For this dendritic cells were generated in vitro by culturing monocytes in the presence of IL-4 and GM-CSF. The wildtype virus WTF and the vaccine virus ED were used for the experiments. The first part of the study analyses the expression of Chemokine receptor 5 (CCR5) and CCR7 as well as functional consequences for the migration of MVinfected DC-cultures. The expression of CCR5 depends on the maturation state of DC; expression of CCR5 on immature DC is downregulated during maturation, while expression of CCR7 is upregulated. This study shows that the expression of CCR5 on DC is not influenced by MV-infection, although other characteristic maturation markers are upregulated. In addition, the expression of CCR7 could not be detected on DC after infection with MV. Chemotaxis assays were used to investigate the results of the flowcytometric analysis in more detail. Despite constant CCR5 expression DC of MV-infected cultures showed impaired migration towards the CCR5 ligand CCL-3. Migration towards the CCR7 ligand CCL-19 could not be detected due to the lack of CCR7 expression. Additionally, differences in the chemokine expression pattern between MV-infected and LPS- or mock-treated DC were observed. Short term infection of DC-cultures resulted in reduced mRNA and protein production of CXCL-8 and CCL-20 in DC infected with MV compared to LPS- or mock-treated cells. The migration of T-cells towards supernatants of MV-infected DC was, as well, impaired in comparison to migration towards supernatants of LPS-treated DC. In the second part of this study identified MV as a ligand for the DC-specific surface molecule DC-SIGN (dendritic cell-specific intercellular adhesion Summary 154 molecule (ICAM)-3 grabbing non-integrin). The work shows that both viruses (ED and WTF) bind to DC-SIGN, whereas uptake and replication of the virus was not supported by DC-SIGN alone. This study could show that the expression of DC-SIGN efficiently enhances the infection of different cells, especially at low virus titers. In particular, the infection of immature DC is supported by DC-SIGN. The high expression level of DC-SIGN on immature DC enhances the efficient infection of these cells. For the infection of immature DC DC-SIGN functions as an enhancement factor, whereas the infection of mature DC is less influenced by DC-SIGN. The third part of this study shows preliminary data of DC/T-cell interactions. Contact duration between both cell types were analysed in three-dimensional collagen matrices by time-lapsed videomicroscopy. The results show that interactions between MV-infected DC and modified T-cells are twice as long as those of not-infected dendritic cells. In parallel the proliferation of contacted T-cells was analysed. The T-cells contacted with MV-infected DC showed impaired proliferation in comparison with T-cells contacted with LPS-treated DC. These results show that the observed short-lived contacts between LPS-treated DC and modified T-cells are more efficient as the longer contacts between MVinfected DC and modified T-cells. KW - Dendritische Zelle KW - Masernvirus KW - Masern KW - Dendritische Zellen KW - Chemotaxis KW - T-Zellen KW - DC-SIGN KW - measles KW - dendritic cells KW - chemotaxis KW - t-cells KW - DC-SIGN Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19706 ER -