TY - JOUR A1 - Seher, Axel A1 - Lagler, Charlotte A1 - Stühmer, Thorsten A1 - Müller-Richter, Urs Dietmar Achim A1 - Kübler, Alexander Christian A1 - Sebald, Walter A1 - Müller, Thomas Dieter A1 - Nickel, Joachim T1 - Utilizing BMP-2 muteins for treatment of multiple myeloma JF - PLoS ONE N2 - Multiple myeloma (MM) represents a haematological cancer characterized by the pathological hyper proliferation of antibody-producing B-lymphocytes. Patients typically suffer from kidney malfunction and skeletal disorders. In the context of MM, the transforming growth factor β (TGFβ) member Activin A was recently identified as a promoter of both accompanying symptoms. Because studies have shown that bone morphogenetic protein (BMP)-2-mediated activities are counteracted by Activin A, we analysed whether BMP2, which also binds to the Activin A receptors ActRII and ActRIIB but activates the alternative SMAD-1/5/8 pathway, can be used to antagonize Activin A activities, such as in the context of MM. Therefore three BMP2 derivatives were generated with modified binding activities for the type II (ActRIIB) and/or type I receptor (BMPRIA) showing either increased or decreased BMP2 activity. In the context of MM these BMP2 muteins show two functionalities since they act as a) an anti-proliferative/apoptotic agent against neoplastic B-cells, b) as a bone-formation promoting growth factor. The molecular basis of both activities was shown in two different cellular models to clearly rely on the properties of the investigated BMP2 muteins to compete for the binding of Activin A to the Activin type II receptors. The experimental outcome suggests new therapeutic strategies using BMP2 variants in the treatment of MM-related pathologies. KW - multiple myeloma KW - signaling KW - cell proliferation KW - cell binding KW - membrane receptor signaling KW - BMP KW - gene expression KW - B cell receptors KW - B cells Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158144 VL - 12 IS - 5 ER - TY - JOUR A1 - Müller-Deubert, Sigrid A1 - Seefried, Lothar A1 - Krug, Melanie A1 - Jakob, Franz A1 - Ebert, Regina T1 - Epidermal growth factor as a mechanosensitizer in human bone marrow stromal cells JF - Stem Cell Research N2 - Epidermal growth factors (EGFs) e.g. EGF, heparin-binding EGF and transforming growth factor alpha and their receptors e.g. EGFR and ErbB2 control proinflammatory signaling and modulate proliferation in bone marrow stromal cells (BMSC). Interleukin-6 and interleukin-8 are EGF targets and participate in the inflammatory phase of bone regeneration via non-canonical wnt signaling. BMSC differentiation is also influenced by mechanical strain-related activation of ERK1/2 and AP-1, but the role of EGFR signaling in mechanotransduction is unclear. We investigated the effects of EGFR signaling in telomerase-immortalized BMSC, transfected with a luciferase reporter, comprising a mechanoresponsive AP1 element, using ligands, neutralizing antibodies and EGFR inhibitors on mechanotransduction and we found that EGF via EGFR increased the response to mechanical strain. Results were confirmed by qPCR analysis of mechanoresponsive genes. EGF-responsive interleukin-6 and interleukin-8 were synergistically enhanced by EGF stimulation and mechanical strain. We show here in immortalized and primary BMSC that EGFR signaling enhances mechanotransduction, indicating that the EGF system is a mechanosensitizer in BMSC. Alterations in mechanosensitivity and -adaptation are contributors to age-related diseases like osteoporosis and the identification of a suitable mechanosensitizer could be beneficial. The role of the synergism of these signaling cascades in physiology and disease remains to be unraveled. KW - mechanotransduction KW - bone marrow stromal cells KW - epidermal growth factor KW - signaling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170247 VL - 24 ER -