TY - JOUR A1 - Heil, Hannah S. A1 - Schreiber, Benjamin A1 - Götz, Ralph A1 - Emmerling, Monika A1 - Dabauvalle, Marie-Christine A1 - Krohne, Georg A1 - Höfling, Sven A1 - Kamp, Martin A1 - Sauer, Markus A1 - Heinze, Katrin G. T1 - Sharpening emitter localization in front of a tuned mirror JF - Light: Science & Applications N2 - Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio1. Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tuned mirror2,3,4. Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor of two. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color SMLM in cells. KW - imaging and sensing KW - super-resolution microscopy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228080 VL - 7 ER - TY - JOUR A1 - Dunce, James M. A1 - Milburn, Amy E. A1 - Gurusaran, Manickam A1 - da Cruz, Irene A1 - Sen, Lee T. A1 - Benavente, Ricardo A1 - Davies, Owen R. T1 - Structural basis of meiotic telomere attachment to the nuclear envelope by MAJIN-TERB2-TERB1 JF - Nature Communications N2 - Meiotic chromosomes undergo rapid prophase movements, which are thought to facilitate the formation of inter-homologue recombination intermediates that underlie synapsis, crossing over and segregation. The meiotic telomere complex (MAJIN, TERB1, TERB2) tethers telomere ends to the nuclear envelope and transmits cytoskeletal forces via the LINC complex to drive these rapid movements. Here, we report the molecular architecture of the meiotic telomere complex through the crystal structure of MAJIN-TERB2, together with light and X-ray scattering studies of wider complexes. The MAJIN-TERB2 2:2 hetero-tetramer binds strongly to DNA and is tethered through long flexible linkers to the inner nuclear membrane and two TRF1-binding 1:1 TERB2-TERB1 complexes. Our complementary structured illumination microscopy studies and biochemical findings reveal a telomere attachment mechanism in which MAJIN-TERB2-TERB1 recruits telomere-bound TRF1, which is then displaced during pachytene, allowing MAJIN-TERB2-TERB1 to bind telomeric DNA and form a mature attachment plate. KW - DNA KW - meiosis KW - proteins KW - super-resolution microscopy KW - X-ray crystallography Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226416 VL - 9 ER - TY - THES A1 - Erbacher, Christoph T1 - Systemic and local mechanisms of small fiber pathology in female patients with fibromyalgia syndrome T1 - Systemische und lokale Mechanismen der Kleinfaserpathologie bei Patientinnen mit Fibromyalgie Syndrom N2 - Fibromyalgia syndrome (FMS) is a largely heterogeneous chronic pain syndrome of unclear pathophysiology, which lacks objective diagnostics and specific treatment. An immune-related shift towards a pro-inflammatory profile is discussed at a systemic level. Small fiber pathology (SFP) and local participation of non-neuronal skin cells like keratinocytes in cutaneous nociception are potential peripheral contributors. Small RNAs, particularly microRNAs (miRs) and newly described tRNA fragments (tRFs) act as posttranscriptional key regulators of gene expression and may modulate systemic and peripheral cell pathways. On cellular level, the exact mechanisms of keratinocyte-intraepidermal nerve fiber (IENF) interaction in the skin are insufficiently understood. Via small RNA sequencing and quantitative real-time PCR, we investigated miR and tRF signatures in whole blood cells and skin biopsy-derived keratinocytes of female FMS patients versus healthy controls. We applied gene target prediction analysis to uncover underlying cellular pathways affected by dysregulated small RNAs. Altered FMS small RNAs from blood were compared with their expression in disease controls, i.e. Parkinson`s patients and patients with major depression and chronic pain. Association of SFP with small RNAs was investigated via correlation with clinical parameter. To explore keratinocyte-nerve fiber interactions with high relevance for SFP and cutaneous nociception, we adapted a super-resolution array tomography (srAT) approach and expansion microscopy (ExM) for human skin samples. Further, we created a fully human 2D co-culture model of primary keratinocytes and induced pluripotent stem cell derived sensory neurons. Blood miR deregulation indicated systemic modulation of immune processes exerted by CholinomiRs and by miRs targeting the FoxO signaling pathway. Short sized tRFs were associated with mRNA metabolism and splicing. This supports the hypothesis of an inflammatory/autoimmunity component in FMS. Expression of blood small RNAs in FMS were discriminative against disease controls, highlighting their potential as objective biomarker. Blood small RNAs were predominantly upregulated and correlations between miR and clinical parameter reflected rather pain in general than SFP. In FMS keratinocytes, a downregulation of miRs and tRFs was evident. Pathways for adenosine monophosphate-activated protein kinase (AMPK), adherens junction, and focal adhesion were predicted to be affected by miRs, while tRFs may influence proliferation, migration, and cell growth. Similar to blood miRs, altered miRs in keratinocytes correlated mostly with widespread pain and pain severity parameter. TRFs were partially associated with more severe IENF loss. Small RNAs in FMS keratinocytes may modulate pathways that define how keratinocytes interact with each other and with IENF. These interactions include nerve fiber ensheathment, a conserved epithelial mechanism, which we visualize in human epidermis and a fully human co-culture model. Additionally, we revealed plaques of connexin 43, a pore forming protein involved in intercellular communication, at keratinocyte- nerve fiber contact sites. Objective quantification of these morphological findings in FMS and other diseases with SFP may inherit diagnostic value similar to IENF density. We provide evidence for distinct miR and tRF signatures in FMS with implications for systemic immune regulation and local cell-cell interaction pathways. In the periphery we explored novel keratinocyte-nerve fiber interactions relevant for SFP and cutaneous nociception. N2 - Das Fibromyalgie Syndrom (FMS) umfasst ein sehr heterogenes chronisches Schmerzsyndrom mit ungeklärter Pathophysiologie, ohne objektive Diagnostik und gezielt wirkende Behandlungsmöglichkeiten. Auf systemischer Ebene wird eine entzündungsfördernde Verschiebung von Immunprozessen diskutiert. In der Peripherie stellen die Kleinfaserpathologie (SFP) und Beteiligungen nicht-neuronaler Hautzellen, beispielsweise Keratinozyten, an kutaner Nozizeption potenziell beitragende Faktoren dar. Kleine RNAs, vor allem microRNAs (miRs) und die kürzlich beschriebenen tRNA Fragmente (tRFs) agieren als posttranskriptionelle Schlüsselregulatoren der Genexpression und könnten daher systemische und periphere Zellprozesse modulieren. Die genauen zellulären Mechanismen bei der Interaktion von Keratinozyten mit intraepidermalen Nervenfasern (IENF) in der Haut sind nur unzureichend verstanden. Mittels Sequenzierung von kleinen RNAs und quantitativer Real-Time PCR untersuchten wir miR und tRF Signaturen in Vollblutzellen und in durch Hautbiopsie gewonnene Keratinozyten von FMS Patientinnen im Vergleich zu gesunden weiblichen Kontrollen. Um zugrundeliegende Zellprozesswege aufzudecken, die von der Deregulierung kleiner RNAs betroffen sind, verwendeten wir Vorhersageprogramme für regulierte Gene. In FMS verändert vorliegende kleine RNAs im Blut verglichen wir mit ihrer Expression in Krankheitskontrollen, d.h. Parkinson Patientinnen und Patientinnen mit schwerer Depression und chronischem Schmerz. Die Beziehung zwischen SFP und kleinen RNAs wurde mittels der Korrelation mit klinischen Parametern untersucht. Zur Erforschung von Keratinozyten-Nervenfaser Interaktionen, mit großer Relevanz für SFP und kutane Nozizeption, adaptierten wir eine superauflösende Array-Tomographie (srAT) Methodik und Expansionsmikroskopie (ExM) für humane Hautproben. Außerdem entwickelten wir ein rein humanes 2D Ko-Kultur Zellmodell, bestehend aus primären Keratinozyten und sensiblen Neuronen, die aus induzierten pluripotenten Stammzellen generiert wurden. MiR Deregulierungen in Blut wiesen auf systemische Modulierung von Immunprozessen hin, ausgeübt durch CholinomiRs und miRs, die auf den FoxO Signalweg einwirken. Die tRFs mit kurzer Fragmentlänge waren mit mRNA Metabolismus und Splicing verknüpft. Diese Ergebnisse unterbauen die Hypothese einer entzündungsfördernden/autoimmunen Komponente in FMS. Die Expression kleiner RNAs aus FMS Blut war unterschiedlich zu Krankheitskontrollen, was ihr Potenzial als objektive Biomarker hervorhebt. Kleine RNAs im Blut waren überwiegend erhöht exprimiert und Korrelation zwischen miRs und klinischen Parametern spiegelten eher Schmerzen im Allgemeinen wider als SFP. In Keratinozyten von FMS Patientinnen war eine Herunterregulierung von miRs und tRFs ersichtlich. Der Signalweg der Adenosinmonophosphat aktivierten Proteinkinase (AMPK), sowie Adherens Junction und Fokale Adhäsion waren prognostiziere Prozesse unter Einfluss von miRs. Ähnlich wie bei den Blut miRs, korrelierten veränderte miRs in Keratinozyten vor allem mit der Verbreitung des Schmerzes über den Körper und der Schmerzintensität. TRFs waren teilweise mit einem höheren Verlust an IENF verknüpft. Kleine RNAs in Keratinozyten von FMS Patientinnen könnten jene Prozesse modulieren, die festlegen, wie Keratinozyten miteinander und mit IENF interagieren. Diese Interaktionen beinhalten den konservierten Mechanismus der Nervenfaserumhüllung, den wir in humaner Epidermis und einem komplett humanen Ko-Kultur Modell auflösen konnten. Zusätzlich zeigten wir Anhäufungen von Connexin 43, einem an interzellulärer Kommunikation beteiligten porenformenden Protein, an Keratinozyten-Nervenfaser Kontaktstellen. Eine objektive Quantifizierung dieser morphologischen Befunde in FMS und weiteren Erkrankungen mit SFP könnte einen diagnostischen Wert vergleichbar mit dem der IENF Dichte innehaben. Wir liefern Belege für klare miR und tRF Signaturen in FMS mit Bedeutung für systemische Immunregulation und lokale Zell-Zell Interaktionsprozesse. In der Peripherie erkundeten wir neueartige Keratinozyten-Nervenfaser Interaktionen relevant für SFP und kutane Nozizeption. KW - Fibromyalgiesyndrom KW - Small RNA KW - Keratinozyt KW - Mikroskopie KW - Fibromyalgia syndrome KW - small RNA expression KW - super-resolution microscopy KW - Fibromyalgie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290203 ER - TY - JOUR A1 - Trinks, Nora A1 - Reinhard, Sebastian A1 - Drobny, Matthias A1 - Heilig, Linda A1 - Löffler, Jürgen A1 - Sauer, Markus A1 - Terpitz, Ulrich T1 - Subdiffraction-resolution fluorescence imaging of immunological synapse formation between NK cells and A. fumigatus by expansion microscopy JF - Communications Biology N2 - Expansion microscopy (ExM) enables super-resolution fluorescence imaging on standard microscopes by physical expansion of the sample. However, the investigation of interactions between different organisms such as mammalian and fungal cells by ExM remains challenging because different cell types require different expansion protocols to ensure identical, ideally isotropic expansion of both partners. Here, we introduce an ExM method that enables super-resolved visualization of the interaction between NK cells and Aspergillus fumigatus hyphae. 4-fold expansion in combination with confocal fluorescence imaging allows us to resolve details of cytoskeleton rearrangement as well as NK cells' lytic granules triggered by contact with an RFP-expressing A. fumigatus strain. In particular, subdiffraction-resolution images show polarized degranulation upon contact formation and the presence of LAMP1 surrounding perforin at the NK cell-surface post degranulation. Our data demonstrate that optimized ExM protocols enable the investigation of immunological synapse formation between two different species with so far unmatched spatial resolution. KW - biological fluorescence KW - fluorescence imaging KW - imaging the immune system KW - infectious diseases KW - super-resolution microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264996 VL - 4 IS - 1 ER - TY - JOUR A1 - Mrestani, Achmed A1 - Pauli, Martin A1 - Kollmannsberger, Philip A1 - Repp, Felix A1 - Kittel, Robert J. A1 - Eilers, Jens A1 - Doose, Sören A1 - Sauer, Markus A1 - Sirén, Anna-Leena A1 - Heckmann, Manfred A1 - Paul, Mila M. T1 - Active zone compaction correlates with presynaptic homeostatic potentiation JF - Cell Reports N2 - Neurotransmitter release is stabilized by homeostatic plasticity. Presynaptic homeostatic potentiation (PHP) operates on timescales ranging from minute- to life-long adaptations and likely involves reorganization of presynaptic active zones (AZs). At Drosophila melanogaster neuromuscular junctions, earlier work ascribed AZ enlargement by incorporating more Bruchpilot (Brp) scaffold protein a role in PHP. We use localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM]) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) to study AZ plasticity during PHP at the synaptic mesoscale. We find compaction of individual AZs in acute philanthotoxin-induced and chronic genetically induced PHP but unchanged copy numbers of AZ proteins. Compaction even occurs at the level of Brp subclusters, which move toward AZ centers, and in Rab3 interacting molecule (RIM)-binding protein (RBP) subclusters. Furthermore, correlative confocal and dSTORM imaging reveals how AZ compaction in PHP translates into apparent increases in AZ area and Brp protein content, as implied earlier. KW - active zone KW - Bruchpilot KW - RIM-binding protein KW - compaction KW - homeostasis KW - presynaptic plasticity KW - super-resolution microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265497 VL - 37 IS - 1 ER - TY - JOUR A1 - Eiring, Patrick A1 - McLaughlin, Ryan A1 - Matikonda, Siddharth S. A1 - Han, Zhongying A1 - Grabenhorst, Lennart A1 - Helmerich, Dominic A. A1 - Meub, Mara A1 - Beliu, Gerti A1 - Luciano, Michael A1 - Bandi, Venu A1 - Zijlstra, Niels A1 - Shi, Zhen-Dan A1 - Tarasov, Sergey G. A1 - Swenson, Rolf A1 - Tinnefeld, Philip A1 - Glembockyte, Viktorija A1 - Cordes, Thorben A1 - Sauer, Markus A1 - Schnermann, Martin J. T1 - Targetable conformationally restricted cyanines enable photon-count-limited applications JF - Angewandte Chemie Internationale Edition N2 - Cyanine dyes are exceptionally useful probes for a range of fluorescence-based applications, but their photon output can be limited by trans-to-cis photoisomerization. We recently demonstrated that appending a ring system to the pentamethine cyanine ring system improves the quantum yield and extends the fluorescence lifetime. Here, we report an optimized synthesis of persulfonated variants that enable efficient labeling of nucleic acids and proteins. We demonstrate that a bifunctional sulfonated tertiary amide significantly improves the optical properties of the resulting bioconjugates. These new conformationally restricted cyanines are compared to the parent cyanine derivatives in a range of contexts. These include their use in the plasmonic hotspot of a DNA-nanoantenna, in single-molecule Förster-resonance energy transfer (FRET) applications, far-red fluorescence-lifetime imaging microscopy (FLIM), and single-molecule localization microscopy (SMLM). These efforts define contexts in which eliminating cyanine isomerization provides meaningful benefits to imaging performance. KW - biology KW - super-resolution microscopy KW - conformational restriction KW - cyanine dyes KW - DNA nanotechnology KW - fluorescent dyes KW - single-molecule fluorescence spectroscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256559 VL - 60 IS - 51 ER - TY - JOUR A1 - Lukeš, Tomáš A1 - Glatzová, Daniela A1 - Kvíčalová, Zuzana A1 - Levet, Florian A1 - Benda, Aleš A1 - Letschert, Sebastian A1 - Sauer, Markus A1 - Brdička, Tomáš A1 - Lasser, Theo A1 - Cebecauer, Marek T1 - Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging JF - Nature Communications N2 - Quantitative approaches for characterizing molecular organization of cell membrane molecules under physiological and pathological conditions profit from recently developed super-resolution imaging techniques. Current tools employ statistical algorithms to determine clusters of molecules based on single-molecule localization microscopy (SMLM) data. These approaches are limited by the ability of SMLM techniques to identify and localize molecules in densely populated areas and experimental conditions of sample preparation and image acquisition. We have developed a robust, model-free, quantitative clustering analysis to determine the distribution of membrane molecules that excels in densely labeled areas and is tolerant to various experimental conditions, i.e. multiple-blinking or high blinking rates. The method is based on a TIRF microscope followed by a super-resolution optical fluctuation imaging (SOFI) analysis. The effectiveness and robustness of the method is validated using simulated and experimental data investigating nanoscale distribution of CD4 glycoprotein mutants in the plasma membrane of T cells. KW - biology KW - fluorescence imaging KW - imaging the immune system KW - super-resolution microscopy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172993 VL - 8 ER - TY - THES A1 - Schlegel, Jan T1 - Super-Resolution Microscopy of Sphingolipids and Protein Nanodomains T1 - Hochaufgelöste Mikroskopie von Sphingolipiden und Protein Nanodomänen N2 - The development of cellular life on earth is coupled to the formation of lipid-based biological membranes. Although many tools to analyze their biophysical properties already exist, their variety and number is still relatively small compared to the field of protein studies. One reason for this, is their small size and complex assembly into an asymmetric tightly packed lipid bilayer showing characteristics of a two-dimensional heterogenous fluid. Since membranes are capable to form dynamic, nanoscopic domains, enriched in sphingolipids and cholesterol, their detailed investigation is limited to techniques which access information below the diffraction limit of light. In this work, I aimed to extend, optimize and compare three different labeling approaches for sphingolipids and their subsequent analysis by the single-molecule localization microscopy (SMLM) technique direct stochastic optical reconstruction microscopy (dSTORM). First, I applied classical immunofluorescence by immunoglobulin G (IgG) antibody labeling to detect and quantify sphingolipid nanodomains in the plasma membrane of eukaryotic cells. I was able to identify and characterize ceramide-rich platforms (CRPs) with a size of ~ 75nm on the basal and apical membrane of different cell lines. Next, I used click-chemistry to characterize sphingolipid analogs in living and fixed cells. By using a combination of fluorescence microscopy and anisotropy experiments, I analyzed their accessibility and configuration in the plasma membrane, respectively. Azide-modified, short fatty acid side chains, were accessible to membrane impermeable dyes and localized outside the hydrophobic membrane core. In contrast, azide moieties at the end of longer fatty acid side chains were less accessible and conjugated dyes localized deeper within the plasma membrane. By introducing photo-crosslinkable diazirine groups or chemically addressable amine groups, I developed methods to improve their immobilization required for dSTORM. Finally, I harnessed the specific binding characteristics of non-toxic shiga toxin B subunits (STxBs) and cholera toxin B subunits (CTxBs) to label and quantify glycosphingolipid nanodomains in the context of Neisseria meningitidis infection. Under pyhsiological conditions, these glycosphingolipids were distributed homogenously in the plasma membrane but upon bacterial infection CTxB detectable gangliosides accumulated around invasive Neisseria meningitidis. I was able to highlight the importance of cell cycle dependent glycosphingolipid expression for the invasion process. Blocking membrane accessible sugar headgroups by pretreatment with CTxB significantly reduced the number of invasive bacteria which confirmed the importance of gangliosides for bacterial uptake into cells. Based on my results, it can be concluded that labeling of sphingolipids should be carefully optimized depending on the research question and applied microscopy technique. In particular, I was able to develop new tools and protocols which enable the characterization of sphingolipid nanodomains by dSTORM for all three labeling approaches. N2 - Die Entwicklung von zellulären Lebensformen auf der Erde basiert auf der Entstehung biologischer Lipid-Membranen. Obwohl viele Techniken zur Verfügung stehen, welche es erlauben deren biophysikalische Eigenschaften zu untersuchen, sind die Möglichkeiten, verglichen mit der Analyse von Proteinen, eher eingeschränkt. Ein Grund hierfür, ist die geringe Größe von Lipiden und deren komplexe Zusammenlagerung in eine asymmetrische dicht gepackte Lipiddoppelschicht, welche sich wie eine heterogene zweidimensionale Flüssigkeit verhält. Durch die lokale Anreicherung von Sphingolipiden und Cholesterol sind Membranen in der Lage dynamische, nanoskopische Domänen auszubilden, welche lediglich mit Techniken, welche die optische Auflösungsgrenze umgehen, detailliert untersucht werden können. Ein wesentliches Ziel meiner Arbeit war es, drei Färbeverfahren für Sphingolipide zu vergleichen, erweitern und optimieren, um eine anschliessende Untersuchung mit Hilfe der einzelmolekülsensitiven Technik dSTORM (direct stochastic optical reconstruction microscopy) zu ermöglichen. Zunächst verwendete ich das klassische Färbeverfahren der Immunfluoreszenz, um Sphingolipid-Nanodomänen auf eukaryotischen Zellen mit Hilfe von Farbstoff-gekoppelten Antikörpern zu detektieren und quantifizieren. Dieses Vorgehen ermöglichte es mir, Ceramid-angereicherte Plattformen mit einer Größe von ~ 75nm auf der basalen und apikalen Membran verschiedener Zell-Linien zu identifizieren und charakterisieren. Als nächstes Verfahren verwendete ich die Klick-Chemie, um Sphingolipid-Analoge in lebenden und fixierten Zellen zu untersuchen. Eine Kombination aus Fluoreszenz-Mikroskopie und Anisotropie-Messungen erlaubte es mir Rückschlüsse über deren Zugänglichkeit und Konfiguration innerhalb der Plasmamembran zu ziehen. Hierbei lokalisierten Azid-Gruppen am Ende kurzkettiger Fettsäurereste außerhalb des hydrophoben Membrankerns, wodurch sie mittels membran-undurchlässige Farbstoffe angeklickt werden konnten. Im Gegensatz dazu, waren Azide an längeren Fettsäureresten weniger zugänglich und konjugierte Farbstoffe tauchten tiefer in die Plasmamembran ein. Durch die Einführung photoreaktiver Diazirin-Gruppen oder chemisch modifzierbarer Amin-Gruppen wurden Wege geschaffen, welche eine Immobilisierung und anschließende Analyse mit Hilfe von dSTORM ermöglichen. Schließlich nutzte ich das spezifische Bindeverhalten der nicht toxischen B Untereinheiten von Shiga- (STxB) und Cholera-Toxin (CTxB) aus, um Glycosphingolipid Nanodomänen im Kontext einer Neisseria meningitidis Infektion zu untersuchen. Unter physiologischen Bedingungen waren diese homogen in der Plasmamembran verteilt, jedoch reicherten sich CTxB-detektierbare Ganglioside um eindringende Bakterien an. Darüber hinaus konnte ich einen Zusammenhang zwischen der zellzyklusabhängigen Expression von Glycosphingolipiden und dem Eindringen der Bakterien herstellen. Eine Absättigung der Zucker an der äußeren Membran durch CTxB-Vorbehandlung reduzierte die Anzahl von invasiven Bakterien signifikant und bestätigte die Schlüsselrolle von Gangliosiden bei der Aufnahme von Bakterien. Meine Ergebnisse legen Nahe, dass das Färbeverfahren für Sphingolipide an die jeweilige Fragestellung und Mikroskopietechnik angepasst werden sollte. Im Rahmen dieser Arbeit konnten neue Werkzeuge und Protokolle geschaffen werden, die die Charakterisierung von Sphingolipid-Nanodomänen mittels dSTORM für alle drei Färbeverfahren ermöglichen. KW - Sphingolipide KW - Lipide KW - Einzelmolekülmikroskopie KW - Click-Chemie KW - Lipid Raft KW - super-resolution microscopy KW - sphingolipids KW - labeling techniques KW - dSTORM KW - lipid rafts Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229596 ER - TY - JOUR A1 - Markert, Sebastian Matthias A1 - Britz, Sebastian A1 - Proppert, Sven A1 - Lang, Marietta A1 - Witvliet, Daniel A1 - Mulcahy, Ben A1 - Sauer, Markus A1 - Zhen, Mei A1 - Bessereau, Jean-Louis A1 - Stigloher, Christian T1 - Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome JF - Neurophotonics N2 - Correlating molecular labeling at the ultrastructural level with high confidence remains challenging. Array tomography (AT) allows for a combination of fluorescence and electron microscopy (EM) to visualize subcellular protein localization on serial EM sections. Here, we describe an application for AT that combines near-native tissue preservation via high-pressure freezing and freeze substitution with super-resolution light microscopy and high-resolution scanning electron microscopy (SEM) analysis on the same section. We established protocols that combine SEM with structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). We devised a method for easy, precise, and unbiased correlation of EM images and super-resolution imaging data using endogenous cellular landmarks and freely available image processing software. We demonstrate that these methods allow us to identify and label gap junctions in Caenorhabditis elegans with precision and confidence, and imaging of even smaller structures is feasible. With the emergence of connectomics, these methods will allow us to fill in the gap-acquiring the correlated ultrastructural and molecular identity of electrical synapses. KW - caenorhabditis elegans KW - localization micoscopy KW - fluorescent-probes KW - junction proteins KW - resolution limit KW - direct stochasticoptical reconstruction microscopy KW - structured illumination microscopy KW - correlative light and electron microscopy KW - gap junction KW - neural circuits KW - nervous-system KW - image data KW - reconstruction KW - innexins KW - super-resolution microscopy Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187292 VL - 3 IS - 4 ER - TY - JOUR A1 - Schlegel, Jan A1 - Peters, Simon A1 - Doose, Sören A1 - Schubert-Unkmeir, Alexandra A1 - Sauer, Markus T1 - Super-resolution microscopy reveals local accumulation of plasma membrane gangliosides at Neisseria meningitidis Invasion Sites JF - Frontiers in Cell and Developmental Biology N2 - Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for epidemic meningitis and sepsis worldwide. A critical step in the development of meningitis is the interaction of bacteria with cells forming the blood-cerebrospinal fluid barrier, which requires tight adhesion of the pathogen to highly specialized brain endothelial cells. Two endothelial receptors, CD147 and the β2-adrenergic receptor, have been found to be sequentially recruited by meningococci involving the interaction with type IV pilus. Despite the identification of cellular key players in bacterial adhesion the detailed mechanism of invasion is still poorly understood. Here, we investigated cellular dynamics and mobility of the type IV pilus receptor CD147 upon treatment with pili enriched fractions and specific antibodies directed against two extracellular Ig-like domains in living human brain microvascular endothelial cells. Modulation of CD147 mobility after ligand binding revealed by single-molecule tracking experiments demonstrates receptor activation and indicates plasma membrane rearrangements. Exploiting the binding of Shiga (STxB) and Cholera toxin B (CTxB) subunits to the two native plasma membrane sphingolipids globotriaosylceramide (Gb3) and raft-associated monosialotetrahexosylganglioside GM1, respectively, we investigated their involvement in bacterial invasion by super-resolution microscopy. Structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM) unraveled accumulation and coating of meningococci with GM1 upon cellular uptake. Blocking of CTxB binding sites did not impair bacterial adhesion but dramatically reduced bacterial invasion efficiency. In addition, cell cycle arrest in G1 phase induced by serum starvation led to an overall increase of GM1 molecules in the plasma membrane and consequently also in bacterial invasion efficiency. Our results will help to understand downstream signaling events after initial type IV pilus-host cell interactions and thus have general impact on the development of new therapeutics targeting key molecules involved in infection. KW - Neisseria meningitidis KW - sphingolipids KW - gangliosides and lipid rafts KW - super-resolution microscopy KW - single-molecule tracking Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201639 VL - 7 IS - 194 ER -