TY - JOUR A1 - Suliman, Salwa A1 - Mustafa, Kamal A1 - Krueger, Anke A1 - Steinmüller-Nethl, Doris A1 - Finne-Wistrand, Anna A1 - Osdal, Tereza A1 - Hamza, Amani O. A1 - Sun, Yang A1 - Parajuli, Himalaya A1 - Waag, Thilo A1 - Nickel, Joachim A1 - Johannessen, Anne Christine A1 - McCormack, Emmet A1 - Costea, Daniela Elena T1 - Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes JF - Biomaterials N2 - This study aimed to evaluate the tumorigenic potential of functionalising poly(LLA-co-CL) scaffolds. The copolymer scaffolds were functionalised with nanodiamonds (nDP) or with nDP and physisorbed BMP-2 (nDP-PHY) to enhance osteoinductivity. Culturing early neoplastic dysplastic keratinocytes (DOK\(^{Luc}\)) on nDP modified scaffolds reduced significantly their subsequent sphere formation ability and decreased significantly the cells' proliferation in the supra-basal layers of in vitro 3D oral neoplastic mucosa (3D-OT) when compared to DOK\(^{Luc}\) previously cultured on nDP-PHY scaffolds. Using an in vivo non-invasive environmentally-induced oral carcinogenesis model, nDP scaffolds were observed to reduce bioluminescence intensity of tumours formed by DOK\(^{Luc}\) + carcinoma associated fibroblasts (CAF). nDP modification was also found to promote differentiation of DOK\(^{Luc}\) both in vitro in 3D-OT and in vivo in xenografts formed by DOKLuc alone. The nDP-PHY scaffold had the highest number of invasive tumours formed by DOK\(^{Luc}\) + CAF outside the scaffold area compared to the nDP and control scaffolds. In conclusion, in vitro and in vivo results presented here demonstrate that nDP modified copolymer scaffolds are able to decrease the tumorigenic potential of DOK\(^{Luc}\), while confirming concerns for the therapeutic use of BMP-2 for reconstruction of bone defects in oral cancer patients due to its tumour promoting capabilities. KW - Bone morphogenetic protein-2 KW - Sinus floor augmentation KW - Marrow stromal cells KW - Growth; BMP-2 KW - Tumorigenicity KW - Biodegradable polymer scaffolds KW - Mandibular continuity defects KW - Squamous-cell carcinoma KW - In-vitro KW - Mesenchymal transition KW - BMP-2 KW - Bone tissue engineering KW - Biocompatibility KW - Microenvironment KW - Oral squamous cell carcinoma Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188287 VL - 95 ER - TY - JOUR A1 - Plauth, Annabell A1 - Geikowski, Anne A1 - Cichon, Susanne A1 - Wowro, Sylvia J. A1 - Liedgens, Linda A1 - Rousseau, Morten A1 - Weidner, Christopher A1 - Fuhr, Luise A1 - Kliem, Magdalena A1 - Jenkins, Gail A1 - Lotito, Silvina A1 - Wainwright, Linda J. A1 - Sauer, Sascha T1 - Hormetic shifting of redox environment by pro-oxidative resveratrol protects cells against stress JF - Free Radical Biology and Medicine N2 - Resveratrol has gained tremendous interest owing to multiple reported health-beneficial effects. However, the underlying key mechanism of action of this natural product remained largely controversial. Here, we demonstrate that under physiologically relevant conditions major biological effects of resveratrol can be attributed to its generation of oxidation products such as reactive oxygen species (ROS). At low nontoxic concentrations (in general < 50 mu M), treatment with resveratrol increased viability in a set of representative cell models, whereas application of quenchers of ROS completely truncated these beneficial effects. Notably, resveratrol treatment led to mild, Nrf2-specific gene expression reprogramming. For example, in primary epidermal keratinocytes derived from human skin this coordinated process resulted in a 1.3-fold increase of endogenously generated glutathione (GSH) and subsequently in a quantitative reduction of the cellular redox environment by 2.61 mV mmol GSH per g protein. After induction of oxidative stress by using 0.78% (v/v) ethanol, endogenous generation of ROS was consequently reduced by 24% in resveratrol pre-treated cells. In contrast to the common perception that resveratrol acts mainly as a chemical antioxidant or as a target protein-specific ligand, we propose that the cellular response to resveratrol treatment is essentially based on oxidative triggering. In physiological microenvironments this molecular training can lead to hormetic shifting of cellular defense towards a more reductive state to improve physiological resilience to oxidative stress. KW - Trans-reservatrol KW - Hydrogen-peroxide KW - In-vitro KW - Hormesis KW - Ethanol KW - Oxygen KW - Nrf2 KW - Glutathione KW - Metabolism KW - Polyphenols KW - ROS KW - Oxidative stress KW - Redox environment KW - Skin KW - Epidermis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187186 VL - 99 ER -