TY - JOUR A1 - Tran-Gia, Johannes A1 - Denis-Bacelar, Ana M. A1 - Ferreira, Kelley M. A1 - Robinson, Andrew P. A1 - Calvert, Nicholas A1 - Fenwick, Andrew J. A1 - Finocchiaro, Domenico A1 - Fioroni, Federica A1 - Grassi, Elisa A1 - Heetun, Warda A1 - Jewitt, Stephanie J. A1 - Kotzassarlidou, Maria A1 - Ljungberg, Michael A1 - McGowan, Daniel R. A1 - Scott, Nathaniel A1 - Scuffham, James A1 - Gleisner, Katarina Sjögreen A1 - Tipping, Jill A1 - Wevrett, Jill A1 - Lassmann, Michael T1 - A multicentre and multi-national evaluation of the accuracy of quantitative Lu-177 SPECT/CT imaging performed within the MRTDosimetry project JF - EJNMMI Physics N2 - Purpose Patient-specific dosimetry is required to ensure the safety of molecular radiotherapy and to predict response. Dosimetry involves several steps, the first of which is the determination of the activity of the radiopharmaceutical taken up by an organ/lesion over time. As uncertainties propagate along each of the subsequent steps (integration of the time–activity curve, absorbed dose calculation), establishing a reliable activity quantification is essential. The MRTDosimetry project was a European initiative to bring together expertise in metrology and nuclear medicine research, with one main goal of standardizing quantitative \(^{177}\)Lu SPECT/CT imaging based on a calibration protocol developed and tested in a multicentre inter-comparison. This study presents the setup and results of this comparison exercise. Methods The inter-comparison included nine SPECT/CT systems. Each site performed a set of three measurements with the same setup (system, acquisition and reconstruction): (1) Determination of an image calibration for conversion from counts to activity concentration (large cylinder phantom), (2) determination of recovery coefficients for partial volume correction (IEC NEMA PET body phantom with sphere inserts), (3) validation of the established quantitative imaging setup using a 3D printed two-organ phantom (ICRP110-based kidney and spleen). In contrast to previous efforts, traceability of the activity measurement was required for each participant, and all participants were asked to calculate uncertainties for their SPECT-based activities. Results Similar combinations of imaging system and reconstruction lead to similar image calibration factors. The activity ratio results of the anthropomorphic phantom validation demonstrate significant harmonization of quantitative imaging performance between the sites with all sites falling within one standard deviation of the mean values for all inserts. Activity recovery was underestimated for total kidney, spleen, and kidney cortex, while it was overestimated for the medulla. Conclusion This international comparison exercise demonstrates that harmonization of quantitative SPECT/CT is feasible when following very specific instructions of a dedicated calibration protocol, as developed within the MRTDosimetry project. While quantitative imaging performance demonstrates significant harmonization, an over- and underestimation of the activity recovery highlights the limitations of any partial volume correction in the presence of spill-in and spill-out between two adjacent volumes of interests. KW - quantitative SPECT/CT KW - 177Lu SPECT/CT imaging KW - standardization of SPECT/CT imaging KW - harmonization of SPECT/CT imaging KW - international multicenter comparison exercise KW - traceability of SPECT/CT imaging KW - molecular radiotherapy (MRT) KW - 3D printing KW - phantom Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270380 VL - 8 ER - TY - JOUR A1 - Bakirci, Ezgi A1 - Frank, Andreas A1 - Gumbel, Simon A1 - Otto, Paul F. A1 - Fürsattel, Eva A1 - Tessmer, Ingrid A1 - Schmidt, Hans‐Werner A1 - Dalton, Paul D. T1 - Melt Electrowriting of Amphiphilic Physically Crosslinked Segmented Copolymers JF - Macromolecular Chemistry and Physics N2 - Various (AB)\(_{n}\) and (ABAC)\(_{n}\) segmented copolymers with hydrophilic and hydrophobic segments are processed via melt electrowriting (MEW). Two different (AB)\(_{n}\) segmented copolymers composed of bisurea segments and hydrophobic poly(dimethyl siloxane) (PDMS) or hydrophilic poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEG-PPO) segments, while the amphiphilic (ABAC)\(_{n}\) segmented copolymers consist of bisurea segments in the combination of hydrophobic PDMS segments and hydrophilic PPO-PEG-PPO segments with different ratios, are explored. All copolymer compositions are processed using the same conditions, including nozzle temperature, applied voltage, and collector distance, while changes in applied pressure and collector speed altered the fiber diameter in the range of 7 and 60 µm. All copolymers showed excellent processability with MEW, well-controlled fiber stacking, and inter-layer bonding. Notably, the surfaces of all four copolymer fibers are very smooth when visualized using scanning electron microscopy. However, the fibers show different roughness demonstrated with atomic force microscopy. The non-cytotoxic copolymers increased L929 fibroblast attachment with increasing PDMS content while the different copolymer compositions result in a spectrum of physical properties. KW - melt electrowriting KW - 3D printing KW - additive manufacturing KW - electrohydrodynamics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257572 VL - 222 IS - 22 ER - TY - JOUR A1 - Mieszczanek, Pawel A1 - Robinson, Thomas M. A1 - Dalton, Paul D. A1 - Hutmacher, Dietmar W. T1 - Convergence of Machine Vision and Melt Electrowriting JF - Advanced Materials N2 - Melt electrowriting (MEW) is a high-resolution additive manufacturing technology that balances multiple parametric variables to arrive at a stable fabrication process. The better understanding of this balance is underscored here using high-resolution camera vision of jet stability profiles in different electrical fields. Complementing this visual information are fiber-diameter measurements obtained at precise points, allowing the correlation to electrified jet properties. Two process signatures—the jet angle and for the first time, the Taylor cone area—are monitored and analyzed with a machine vision system, while SEM imaging for diameter measurement correlates real-time information. This information, in turn, allows the detection and correction of fiber pulsing for accurate jet placement on the collector, and the in-process assessment of the fiber diameter. Improved process control is used to successfully fabricate collapsible MEW tubes; structures that require exceptional accuracy and printing stability. Using a precise winding angle of 60° and 300 layers, the resulting 12 mm-thick tubular structures have elastic snap-through instabilities associated with mechanical metamaterials. This study provides a detailed analysis of the fiber pulsing occurrence in MEW and highlights the importance of real-time monitoring of the Taylor cone volume to better understand, control, and predict printing instabilities. KW - polycaprolactone KW - 3D printing KW - digitization KW - electrohydrodynamic KW - melt electrospinning writing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256365 VL - 33 IS - 29 ER - TY - JOUR A1 - Mechau, Jannik A1 - Frank, Andreas A1 - Bakirci, Ezgi A1 - Gumbel, Simon A1 - Jungst, Tomasz A1 - Giesa, Reiner A1 - Groll, Jürgen A1 - Dalton, Paul D. A1 - Schmidt, Hans‐Werner T1 - Hydrophilic (AB)\(_{n}\) Segmented Copolymers for Melt Extrusion‐Based Additive Manufacturing JF - Macromolecular Chemistry and Physics N2 - Several manufacturing technologies beneficially involve processing from the melt, including extrusion‐based printing, electrospinning, and electrohydrodynamic jetting. In this study, (AB)\(_{n}\) segmented copolymers are tailored for melt‐processing to form physically crosslinked hydrogels after swelling. The copolymers are composed of hydrophilic poly(ethylene glycol)‐based segments and hydrophobic bisurea segments, which form physical crosslinks via hydrogen bonds. The degree of polymerization was adjusted to match the melt viscosity to the different melt‐processing techniques. Using extrusion‐based printing, a width of approximately 260 µm is printed into 3D constructs, with excellent interlayer bonding at fiber junctions, due to hydrogen bonding between the layers. For melt electrospinning, much thinner fibers in the range of about 1–15 µm are obtained and produced in a typical nonwoven morphology. With melt electrowriting, fibers are deposited in a controlled way to well‐defined 3D constructs. In this case, multiple fiber layers fuse together enabling constructs with line width in the range of 70 to 160 µm. If exposed to water the printed constructs swell and form physically crosslinked hydrogels that slowly disintegrate, which is a feature for soluble inks within biofabrication strategies. In this context, cytotoxicity tests confirm the viability of cells and thus demonstrating biocompatibility of this class of copolymers. KW - 3D printing KW - (AB)\(_{n}\) segmented copolymers KW - biocompatibility KW - melt electrowriting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224513 VL - 222 IS - 1 ER -