TY - JOUR A1 - Waldholm, Johan A1 - Wang, Zhi A1 - Brodin, David A1 - Tyagi, Anu A1 - Yu, Simei A1 - Theopold, Ulrich A1 - Östlund Farrants, Ann Kristin A1 - Visa, Neus T1 - SWI/SNF regulates the alternative processing of a specific subset of pre-mRNAs in \(Drosophila\) \(melanogaster\) JF - BMC Molecular Biology N2 - Background: The SWI/SNF chromatin remodeling factors have the ability to remodel nucleosomes and play essential roles in key developmental processes. SWI/SNF complexes contain one subunit with ATPase activity, which in Drosophila melanogaster is called Brahma (Brm). The regulatory activities of SWI/SNF have been attributed to its influence on chromatin structure and transcription regulation, but recent observations have revealed that the levels of Brm affect the relative abundances of transcripts that are formed by alternative splicing and/or polyadenylation of the same pre-mRNA. Results: We have investigated whether the function of Brm in pre-mRNA processing in Drosophila melanogaster is mediated by Brm alone or by the SWI/SNF complex. We have analyzed the effects of depleting individual SWI/SNF subunits on pre-mRNA processing throughout the genome, and we have identified a subset of transcripts that are affected by depletion of the SWI/SNF core subunits Brm, Snr1 or Mor. The fact that depletion of different subunits targets a subset of common transcripts suggests that the SWI/SNF complex is responsible for the effects observed on pre-mRNA processing when knocking down Brm. We have also depleted Brm in larvae and we have shown that the levels of SWI/SNF affect the pre-mRNA processing outcome in vivo. Conclusions: We have shown that SWI/SNF can modulate alternative pre-mRNA processing, not only in cultured cells but also in vivo. The effect is restricted to and specific for a subset of transcripts. Our results provide novel insights into the mechanisms by which SWI/SNF regulates transcript diversity and proteomic diversity in higher eukaryotes. KW - Chromatin-remodeling complexes KW - In-vivo KW - Genes KW - Distinct KW - Brahma KW - Transcription KW - Trithorax KW - Subunit KW - Exons KW - BRM Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142613 VL - 12 IS - 46 ER - TY - THES A1 - Lorenzin, Francesca T1 - Regulation of transcription by MYC - DNA binding and target genes T1 - Transkriptionelle Regulation durch MYC - DNA-Bindung und Zielgene N2 - MYC is a transcription factor, whose expression is elevated or deregulated in many human cancers (up to 70%) and is often associated with aggressive and poorly differentiated tumors. Although MYC is extensively studied, discrepancies have emerged about how this transcription factor works. In primary lymphocytes, MYC promotes transcriptional amplification of virtually all genes with an open promoter, whereas in tumor cells MYC regulates specific sets of genes that have significant prognostic value. Furthermore, the set of target genes that distinguish MYC’s physiological function from the pathological/oncogenic one, whether it exists or not, has not been fully understood yet. In this study, it could be shown that MYC protein levels within a cell and promoter affinity (determined by E-box presence or interaction with other proteins) of target genes toward MYC are important factors that influence MYC activity. At low levels, MYC can amplify a certain transcriptional program, which includes high affinity binding sites, whereas at high levels MYC leads to the specific up- and down regulation of genes with low affinity. Moreover, the promoter affinity characterizes different sets of target genes which can be distinguished in the physiological or oncogenic MYC signatures. MYC-mediated repression requires higher MYC levels than activation and formation of a complex with MIZ1 is necessary for inhibiting expression of a subset of MYC target genes. N2 - MYC ist ein Transkriptionsfaktor, dessen Expression in vielen humanen Tumoren (bis zu 70 %) erhöht oder dereguliert ist. Die Tumore, in denen viel MYC hergestellt wird, zeichnen sich durch einen geringen Differenzierungsgrad aus und verhalten sich sehr aggressiv. Obwohl das biologische Verhalten des MYC Proteins intensiv untersucht wurde, sind unterschiedliche Modelle, wie dieser Transkriptionsfaktor funktioniert, entwickelt worden. In primären Lymphozyten verstärkt MYC die Expression fast aller Gene mit offener Chromatinstruktur, während MYC in Tumorzellen spezifische Gengruppten reguliert, deren Expression mit der Prognose von Patienten korreliert. Es ist also unklar, ob sich die Zielgene der physiologischen Funktion von Myc von den oncogenen/pathophysiologischen Zielgenen unterscheidet und um welche Gene es sich bei letzteren handelt. In dieser Arbeit konnte gezeigt werden, dass Expressionsniveau von MYC und unterschiedliche Promotoraffinitäten zu MYC (charakterisiert durch den Ebox-Gehalt und Interaktionen zu anderen Proteinen) wichtig für die Aktivität des MYC Proteins sind. So kann Myc bei niedrigen Konzentrationen ein bestimmtes transkriptionelles Programm amplifizieren, das sich aus hochaffinen Promotoren zusammensetzt. Bei hohen Konzentrationen hingegen führt MYC zur transkriptionellen Aktivierung und Repression bestimmter Zielgengruppen, die sich durch niedrige Affinität zu MYC auszeichnen. Somit ist die Promotoraffinität ein Parameter, der physiologische von oncogenen MYC Signaturen trennen kann. Darüberhinaus konnte gezeigt werden, dass MYC-vermittelte Repression höhere MYC Mengen benötigt, als MYC-vermittelte Transaktivierung und die Komplexbildung mit MIZ1 für die Repression einer Gruppe an MYC Zielgenen nötig ist. KW - MYC KW - Transcription Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150766 ER - TY - THES A1 - Herter, Eva Kristine T1 - Characterization of direct Myc target genes in Drosophila melanogaster and Investigating the interaction of Chinmo and Myc T1 - Charakterisierung direkter Myc Zielgene in Drosophila melanogaster und Interaktionsanalyse der Proteine Chinmo und Myc N2 - The correct regulation of cell growth and proliferation is essential during normal animal development. Myc proteins function as transcription factors, being involved in the con-trol of many growth- and proliferation-associated genes and deregulation of Myc is one of the main driving factors of human malignancies. The first part of this thesis focuses on the identification of directly regulated Myc target genes in Drosophila melanogaster, by combining ChIPseq and RNAseq approaches. The analysis results in a core set of Myc target genes of less than 300 genes which are mainly involved in ribosome biogenesis. Among these genes we identify a novel class of Myc targets, the non-coding small nucleolar RNAs (snoRNAs). In vivo studies show that loss of snoRNAs not only impairs growth during normal development, but that overexpression of several snoRNAs can also enhance tumor development in a neu-ronal tumor model. Together the data show that Myc acts as a master regulator of ribo-some biogenesis and that Myc’s transforming effects in tumor development are at least partially mediated by the snoRNAs. In the second part of the thesis, the interaction of Myc and the Zf-protein Chinmo is described. Co-immunoprecipitations of the two proteins performed under endogenous and exogenous conditions show that they interact physically and that neither the two Zf-domains nor the BTB/POZ-domain of Chinmo are important for this interaction. Fur-thermore ChIP experiments and Myc dependent luciferase assays show that Chinmo and Myc share common target genes, and that Chinmo is presumably also involved in their regulation. While the exact way of how Myc and Chinmo genetically interact with each other still has to be investigated, we show that their interaction is important in a tumor model. Overexpression of the tumor-suppressors Ras and Chinmo leads to tu-mor formation in Drosophila larvae, which is drastically impaired upon loss of Myc. N2 - Die korrekte Regulation von Zellwachstum und Proliferation ist von entscheidender Bedeutung für die Entwicklung von Tieren. Myc-Proteine fungieren als Transkriptions-faktoren, die in die Funktionskontrolle vieler Gene eingebunden sind die eine Rolle bei Zellwachstum und Proliferation spielen. Fehlregulierung von Myc ist ein Hauptfaktor menschlicher Tumorbildung. Der erste Teil dieser Dissertation beschäftigt sich mit der Identifizierung direkt regulierter Myc Zielgene in Drosophila melanogaster durch Kombination von ChIPseq und RNAseq Analysen. Insgesamt wurde eine Hauptgruppe von weniger als 300 Myc Ziel-genen identifiziert, von denen der Großteil eine Funktion in der Ribosomen Biogenese hat. Unter diesen Genen haben wir eine neue Klasse an Myc Zielgenen identifiziert, die nicht-codierenden „small nucleolar RNAs“ (snoRNAs). In vivo Experimente zeigen, dass der Verlust der snoRNAs nicht nur das Wachstum während der natürlichen Ent-wicklung beeinträchtigt, sondern auch, dass Überexpression verschiedener snoRNAs die Tumorbildung in einem neuronalen Tumormodel begünstigt. Zusammenfassend zeigen die Daten, dass Myc maßgeblich Ribosomen Biogenese steuert und dass der transformierende Effekt, den Myc in der Tumorentwicklung inne hat, zumindest teilwei-se durch die snoRNAs gesteuert wird. Im zweiten Teil der Arbeit wird die Interaktion von Myc und dem Zink-Finger Protein Chinmo beschrieben. Co-Immunoprezipitationen der zwei Proteine die unter endogenen und exogenen Bedingungen durchgeführt wurden zeigen, dass sie physisch miteinander interagieren und dass weder Chinmos Zf-Domänen noch seine BTB/POZ-Domäne für diese Interaktion verantwortlich sind. ChIP-Versuche und Myc abhängige Luciferase-Assays zeigen weiterhin, dass Chinmo und Myc gemeinsame Zielgene besitzen und dass Chinmo darüber hinaus wahrscheinlich auch an ihrer Regulation beteiligt ist. Während der genaue Zusammenhang der genetischen Interaktionen von Myc und Chinmo noch ungewiss ist und weiterer Untersuchungen bedarf, kann gezeigt werden, dass die Interaktion der beiden Proteine in einem Tumormodel eine Rolle spielt. Die Tumorbildung die durch Überexpression des Tumorsuppressors Ras zusammen mit Chinmo hervorgerufen wird, wird durch den Verlust von Myc stark reduziert. KW - Myc KW - Drosophila melanogaster KW - Transcription KW - snoRNA KW - Ribosome KW - Growth KW - Taufliege KW - Transkription Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122272 ER - TY - JOUR A1 - Morschhäuser, J. A1 - Uhlin, B. E. A1 - Hacker, Jörg T1 - Transcriptional analysis and regulation of the sfa determinant coding for S fimbria of pathogenic E. coli strains N2 - The sfa determinant codes for S fimbrial adhesins which constitute adherence factors of pathogenic Escherichia coli strains. Wehave recently shown that the sfa determinant is transcribed from three prömoters, pA, pB, and pC. In comparison with the promoters pB and pC, promoter pA, which is located in front of the structural gene sfaA, showed very weak activity. Herewe have determined the exact positions ofthe mRNA start points by primer extension studies. We have also shown that mRNAs of 500, 700 and 1400 bases can be detected using oligonucleotide probes specific for the genes sfaB, sfaC and sfaA. SfaB and SfaC arepositive regulators infiuencing fimbriation and the production of the S-specific adhesin which is encoded by the gene sfaS Iocated in the distal half of the determinant. In addition, it is demonstrated that SfaB and SfaC interfere with the regulatory effect of the histone-like protein H-NS, encoded by a locus termed drdX or osmZ. In a drdx+ strain the regulators are necessary for transcription of the sfa determinant. In contrast, sfa expression is activator-independent in a drdx- strain. In this latter genetic background, a substantial fraction of the sfa transcripts is initiated from promoter pA. On the basis of these data we discuss a model for the regulation of this adhesin-specific determinant. KW - Infektionsbiologie KW - Gene regulation KW - Fimbriae KW - Adhesion KW - Transcription KW - trans-activation Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-59844 ER - TY - THES A1 - Peter, Andreas T1 - Transkriptionelle Regulation des Homeo-Domänen-Transkriptionsfaktors Islet/Duodenum Homeobox-1 (IDX-1) in insulinproduzierenden Betazellen des endokrinen Pankreas T1 - Transcriptional Regulation of the homeodomain transcription factor Islet/Duodenum Homeobox-1 (IDX-1) in insulin producing beta-cells of the endocrine pancreas N2 - Die Betazellmasse wird durch Apoptose, Proliferation und Neogenese aus Vorläuferzellen an den Bedarf des Organismus angepasst. Fehlregulationen und Verlust der Anpassungsfähigkeit sind Ursachen für Diabetes mellitus Typ-2. IDX-1 ist sowohl ein Hauptentwicklungsfaktor des embryonalen Pankreas als auch an der Regulation von Neogenese und Proliferation der adulten Betazellen beteiligt. Betazellproliferation und Differenzierung werden durch Faktoren wie GLP-1 oder milde Hyperglykämie stimuliert und gehen mit einer Aktivierung von IDX-1 einher. In der Arbeit sollte der Einfluss von GLP-1 und milder Hyperglykämie auf die Expression, besonders die Transkription, des Transkriptionsfaktors IDX-1 in insulinproduzierenden Betazellen des endokrinen Pankreas untersucht werden. Ferner wurde eine mögliche Autoregulation des IDX-1 Promotors durch IDX-1 untersucht. Als Modell für adulte Betazellen wurden klonale Betazellen INS-1 und MIN6 verwendet. Die IDX-1 Expression wurde auf mRNA Ebene im Northern Blot und auf Proteinebene mittels Western Blot untersucht. Der Promotor des IDX-1 Gens wurde Mithilfe von Luziferasereportergenassays und EMSA untersucht. Die Expression von IDX-1 Protein und mRNA wird durch milde Hyperglykämie stimuliert. Dieser Effekt ist auf eine Aktivierung des IDX-1 Promotors zurückzuführen. Die Aktivierung innerhalb des Promotors konnte auf zwei Regionen eingeschränkt werden. Diese befinden sich im IDX Promotor in den -900 bp bis -300 bp und den 230 bp vor Beginn der kodierenden Sequenz des IDX-1 Gens. Im EMSA konnte ein glukoseabhängiger Komplex (-49 bp bis -44 bp) nachgewiesen werden, an den USF-1 und USF-2 binden. USFs sind für glukoseabhängige Genregulation in Leber und Pankreas bekannt. Eine Mutation der Bindungsstelle führte zum Verlust des Bindungskomplexes. In Luziferasereportergenassays beobachtete man eine Verringerung der glukoseinduzierten Aktivierung. Für GLP-1 konnte kein eindeutiger Einfluss auf die Expression von IDX-1 gezeigt werden. Als Anzeichen für eine mögliche Autoregulation des IDX-1 Promotors durch IDX-1 wurde bei Überexpression von IDX-1 in Betazellen eine verringerte Promotoraktivität festgestellt. Der in dieser Arbeit untersuchte Transkriptionsfaktor IDX-1 spielt eine Schlüsselrolle in der Regulation der Betazellmasse des endokrinen Pankreas. Es ist wichtig die molekularen Mechanismen der Regulation der Betazellmasse zu verstehen; Erkenntnisse darüber eröffnen einerseits ein besseres Verständnis der Pathogenese des Diabetes mellitus, andererseits stellen sie hoffnungsvolle neue Therapieansätze da. KW - IDX-1 KW - Diabetes mellitus KW - Transkription KW - Betazelle KW - Hyperglykämie KW - IDX-1 KW - Diabetes mellitus KW - Transcription KW - Beta-cell KW - Hyperglycemia Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16407 ER -