TY - THES A1 - Volkenstein, Stefan T1 - Das Wachstumsverhalten von Nucleus cochlearis-Zellen auf verschiedenen Halbleitermaterialien T1 - Cochlear Nucleus Neuron Growth on Semiconductors N2 - Patienten mit einer fortgeschrittenen sensorineuralen Schwerhörigkeit oder Taubheit können von der Versorgung mit implantierbaren Hörsystemen, wie dem Cochlea-Implantat (CI) oder dem Hirnstammimplantat (ABI=auditory brainstem implant), profitieren. Hierbei werden Höreindrücke unter Umgehung der Cochlea durch direkte elektrische Stimulation auditorischer Neurone erzeugt. Eine günstigere „bioelektronische“ Ankopplung solcher Systeme könnte zukünftig zu einer weiteren Verbesserung der Hörqualität führen. Zielsetzung dieser Arbeit war es, Erkenntnisse über das Wachstumsverhalten und die Beeinflussbarkeit von Nucleus cochlearis(NC)-Explantaten auf verschiedenen Halbleitermaterialien zu gewinnen. Zur Beantwortung dieser Fragestellung wurden NC-Explantate von 10 Tage alten Raten für 96 Stunden in Neurobasalmedium auf den beiden Halbleitermaterialien Silizium (Si) und Siliziumnitrid (Si3N4), jeweils mit verschiedenen Oberflächenbehandlungen und der Beschichtung mit Extrazellulärmatrixproteinen durchgeführt. Dabei wurde nach immunhistochemischer Färbung der Neuriten die Überlebensrate der NC-Explantate, die Neuritenanzahl pro Explantat und die Neuritenlänge in den unterschiedlichen Gruppen bestimmt. Des Weiteren sollten durch elektronenmikroskopische Betrachtung nähere Details über die Wechselwirkung der Neuriten mit ihrer biologischen und alloplastischen Umgebung beobachtet werden. Auf unpolierten Halbleitermaterialien konnte zwar eine gutes Anwachsen, aber keine Neuritenelongation beobachtet werden, weder auf Si noch auf Si3N4. Von den untersuchten Gruppen zeigte poliertes und mit Laminin beschichtetes Si3N4 bezüglich Neuritenlänge und –anzahl im Vergleich zur Kontrollgruppe die beste Biokompatibilität. Unter diesen Bedingungen erreichten die Neuriten eine durchschnittliche Länge von 236µm und waren damit signifikant länger als in allen Vergleichsgruppen. Die hier durchgeführten Untersuchungen zeigten, dass die Zellkultur von NC-Explantaten auf Halbleitermaterialien prinzipiell möglich ist. Die Unterschiede zwischen den einzelnen Gruppen, die Neuritenlänge und –anzahl betreffend, deuten auf eine Beeinflussung des Wachstums von NC-Explantaten durch das verwendete Material, die Oberflächenbeschaffenheit und –beschichtung mit Extrazellulärmatrixproteinen hin. Für weiterführende Untersuchungen auf diesem Gebiet mit dem Ziel der engen Adaptation von auditorischen Neuronen und Mikrochipsystemen bietet sich somit poliertes und mit Laminin beschichtetes Si3N4 an. Durch implantierbare Mikrochiptechnologie und deren Einbindung in neuronale Netzwerke, beispielsweise im Hirnstamm, könnte eine Verbesserung der Hörrehabilitation bei ertaubten Patienten erwartet werden. N2 - In patients with severe sensory hearing loss, implantable hearing systems such as cochlear implants (CI) and auditory brainstem implants (ABI) can provide auditory information by electrical stimulation of auditory neurons. The biological adaptation of microelectronics to auditory nerve cells may lead to further improvement in hearing quality for implant users. Whereas several kinds of neurons are known to grow on semiconductor substrates, used in chip technology and neuroelectronics, interactions of cochlear nucleus (CN) neurons with such materials have yet to be described. The here presented investigations show that CN neuron survival and neurite extension on semiconductors is possible. The differences in neuron length and counts per explant indicate that the growth of CN neurons is influenced by the semiconductor substrate as well as extracellular matrix proteins. Laminin coated Si3N4 has been proven to be the preferable material for further hybrid experiments on auditory-neuron-semiconductor chips. Further investigations in this field will be performed to achieve a close adaptation of implantable chip technology to neuronal networks of the auditory brain stem. These new techniques are expected to improve hearing rehabilitation in patients with lesions at the auditory pathway such as acoustic neuroma. KW - Nucleus cochlearis KW - Halbleiter KW - Cochlea Implantat KW - Hirnstammimplantat KW - auditorische Neurone KW - Cochlear Nucleus KW - Semiconductors KW - Cochlea Implant KW - ABI KW - cellculture Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13425 ER - TY - THES A1 - Kohm, Fabian T1 - Untersuchung des Wachstumsverhaltens neuronaler Zellen auf strukturierten Halbleiteroberflächen als Werkstoff zukünftiger Elektrodenträger auditorischer Implantate T1 - Growth behavior of neuronal cells on structured semiconductor surfaces as a material of future electrode carriers of auditory implants N2 - Die Therapie von Patienten mit fortgeschrittener sensorineuraler Schwerhörigkeit oder Taubheit mit auditorischen Implantaten ist heute Standard in der medizinischen Versorgung. Durch direkte elektrische Stimulation der noch vorhanden auditorischen Neurone wird versucht, die physiologische Informationsübertragung entlang der Hörbahn künstlich nachzubilden. Strukturierte Halbleiterelektrodenträger aus Silizium stellen dabei eine mögliche Alternative zu den herkömmlichen Kabelbündel-Elektrodenträgern heutiger Implantate dar. Durch die Möglichkeit der Abstandsverringerung zwischen Stimulationselektroden und Nervenfasern sowie durch die Möglichkeit der Erhöhung der Anzahl an Stimulationselektroden könnte die Leistungsfähigkeit heutiger Implantate verbessert werden. Ziel der vorliegenden Arbeit war es, das Wachstumsverhalten corticaler neuronaler Vorläuferzellen der Maus auf strukturierten Siliziumhalbleitern zu untersuchen und das Wachstumsverhalten näher zu charakterisieren. Zwei unterschiedliche Oberflä-chenstrukturen wurden durch den Einsatz der Elektronenstrahllithografie auf Silizi-umwafern erzeugt. Zylinder auf der Oberfläche der Halbleiter wurden als Modellstruktur gewählt, um eine erhöhte Anzahl an Elektrodenkontakten zu simulieren und die neuronale Interaktion mit diesen zu untersuchen. Daneben wurden Furchen auf Siliziumoberflächen verwendet, um die Wachstumsrichtung der neuronalen Zellen zu beeinflussen. Die durchgeführten Untersuchungen konnten zeigen, dass strukturierte Halbleiter-elektrodenträger in zukünftigen auditorischen Implantaten grundsätzlich eine Alternative zu den Kabelbündel-Elektrodenträgern heutiger Implantate sein könnten. Durch den Einsatz der Elektronenstrahllithografie konnten Siliziumwafer mit präziser Oberflächenstrukturierung hergestellt werden und deren Biokompatibilität durch Kultivierung neuronaler Zellen gezeigt werden. Die Geometrie der eingeätzten Oberflächenstruktur hatte dabei entscheidenden Einfluss auf das Wachstumsverhalten der Zellen. Während durch Furchen die Orientierung der Neurone gezielt beeinflusst werden konnte und die Neuritenlängen mit zunehmender Ätztiefe abnahmen, konnten derartige Effekte bei den untersuchten Zylindern nicht beobachtet werden. Die durchgeführten rasterelektronenmikroskopischen Untersuchungen gaben Auf-schluss über die Interaktion der Neurite mit der Oberflächenstruktur. Auf vertikalen Wachstumsstress reagierten die kortikalen neuronalen Vorläuferzellen unabhängig von der Oberflächenstruktur mit der Ausbildung von neuronalen Brücken. Der Modus der Brückenbildung war bei beiden Strukturen dabei gleich, jedoch wurden unterschiedliche Verankerungspunkte an der Siliziumoberfläche beobachtet. Darüber hinaus konnte durch Echtzeituntersuchungen an lebenden Zellen gezeigt werden, dass diese während des Wachstums ihre Lage verändern konnten und somit nicht dauerhaft mit der Oberfläche verbunden waren. Die Ergebnisse zeigen, dass die beiden untersuchten Oberflächenstrukturen grundsätzlich für den Einsatz auf zukünftigen Halbleiterelektrodenträgern geeignet sind, jedoch noch weiterführende Untersuchungen nötig sind, um diese weiter zu optimieren. N2 - The treatment of patients with advanced sensorineural hearing loss or deafness with auditory implants is standard in health care today. Structured silicon semiconductors could be an alternative to the conventional wire-bundle-electrodes of today's implants. The possibility of reducing the distance between stimulation electrodes and nerve fibers as well as the possibility of increasing the number of stimulation electrodes could improve the performance of today's implants. Aim of the present study was to investigate the growth behavior of cortical neuronal precursor cells of the mouse on structured silicon semiconductors and to characterize the growth behavior. Two different surface structures were created on silicon semiconductors through the use of electron beam lithography. Cylinders on the surface of the semiconductors were chosen as model structure for an increased number of electrode contacts. In addition, grooves on Silicon surfaces were used to influence the direction of the axonal outgrowth. The investigations showed that structured semiconductors basically could be an alternative to the cable-bundle-electrodes of today's implants. The geometry of the surface structure had decisive influence on the growth behavior of cells. While the orientation of the neurons could be influenced by grooves and the axon lengths with etching depth declined, such effects were not observed at the cylinders. Investigations on the scanning electron microscope showed the interaction of the axons with the surface structure. The neuronal precursor cells responded to vertical growth stress regardless of the surface structure with the formation of neural bridges. The mode of bridging was basically equal on both surfaces, but different anchor points on the silicon surface were observed. In real time studies on living cells the dynamic of neuronal growth was investigated. The Observation shoes, that neurons could change their position during growth and that they were not permanently connected to the surface. The results shows that the two observed semiconductor surfaces are generally suitable for the use in auditory implants. Further investigations should follow to optimize the surface structures for future implants. KW - Hirnstammimplantat KW - Strukturierte Siliziumoberflächen KW - neuronale Brückenbildung KW - neuronale Vorläuferzelle KW - Cochleaimplantat KW - Topographic guidance KW - Neuronale Leitung KW - patterned semiconductor substrates KW - neurite bridging KW - neuronal precursor cell KW - cochlear implant KW - auditory brainstem implant Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-104439 ER -