TY - THES A1 - Schulze, Markus T1 - Role of Chronophin for glioma cell migration and invasion T1 - Die Rolle von Chronophin für die Migration und Invasion von Gliomzellen N2 - Abstract Glioblastomas, primary brain tumors, represent a tumor entity with a dismal prognosis and a median survival of only about one year. Invasion into the healthy brain parenchyma contributes substantially to the malignancy of this type of brain tumor. Therefore, a better understanding of the mechanisms promoting the invasive behavior of these brain tumors is needed to identify new therapeutic targets. Cofilin, an actin regulatory protein, has been shown to be an important regulator of the invasive behavior of tumor cells in other types of cancer and the actin cytoskeleton is involved in the formation of a variety of cellular structures important for cell migration and invasion. Cofilin is regulated by phosphorylation on a single residue, serine 3. The aim of this thesis was to examine the role of the cofilin regulatory phosphatase chronophin for glioma cell migration and invasion. First, it was established that chronophin depletion in the cell line GBM6840 leads to an increase in the ratio of phosphorylated cofilin to total cofilin. Higher chronophin levels were correlated with a decrease in F-actin in the cell lines GBM6840 and U87 as measured in an actin spin down assay and in a flow cytometry based assay. Furthermore, it was shown that knockdown of chronophin in two different cell lines, GBM6840 and DBTRG-05-MG, strongly increased their invasiveness in vitro. Expression of human chronophin in the cell line U87 decreased its invasiveness substantially. There was no difference in cell proliferation between GBM6840 and DBTRG-05-MG cells expressing a chronophin targeting shRNA or a control shRNA and U87 cells transfected with an empty vector or a human chronophin encoding plasmid. The increase in invasiveness after chronophin depletion could be correlated with an increase in directionality in cell migration under 2D culture conditions in the cell lines U87 and GBM6840. Moreover, treatment with the ROCK inhibitor Y-27632 decreased directionality in GBM6840 cells under 2D culture conditions and reduced the invasiveness of GBM6840 chronophin shRNA cells back to control levels. Expression of a non-phosphorylatable cofilin mutant, the S3A mutant, was able to reduce invasiveness and to reduce directionality under 2D culture conditions back to control levels in GBM6840 chronophin shRNA cells. This provides important evidence for the involvement of cofilin phosphoregulation in the phenotypes described above. In vivo, when injected into NOD-SCID mice, chronophin depleted cells showed a dramatic growth reduction as compared to control and rescue cells. Transciptomic characterization of GBM6840 cells by microarray analysis and subsequent comparison of the data with microarray profiles of normal brain tissues and different glioma entities identified two specifically chronophin regulated transcripts potentially involved in tumor progression and invasion, MXI1 and EDIL3. Moreover, c-myc was identified as a significantly altered transcription factor after chronophin deregulation based on the number of c-myc target molecules in the microarray dataset. MXI1 is a potential negative regulator of c-myc dependent transcription, and was strongly downregulated after chronophin knockdown in GBM6840. In line with this, the activity of a c-myc reporter plasmid was increased after chronophin depletion in GBM6840 and reduced after chronophin expression in U87 cells. However, the protein level of the c-myc protein was reduced after chronophin depletion in GBM6840. Finally, anaylsis of the expression of proteases known to be important for glioblastoma pathogenesis revealed no major changes in protease expression between chronophin depleted and control cells. Therefore, a comprehensive analysis of chronophin in the context of glioma pathogenesis has been performed in this thesis. It has been shown that chronophin depletion strongly enhanced invasiveness of glioma cells and that it induced transcriptomic changes potentially involved in tumor progression. The proteins regulating cofilin phosphorylation are therefore valuable therapeutic targets for anti-invasive therapy in glioblastomas. Inhibitors for kinases upstream of cofilin, e.g. LIMKs and ROCKs, are available, and might be promising agents for anti-invasive therapy. N2 - Zusammenfassung Glioblastome sind primäre Gehirntumore, die eine besonders schlechte Prognose besitzen und bei denen die mediane Überlebenszeit nur ca. ein Jahr beträgt. Zur Malignität dieses Tumortyps trägt entscheidend das Eindringen der Tumorzellen in das gesunde Hirnparenchym bei. Daher ist es notwendig die molekularen Mechanismen zu verstehen, die diesem Phänomen zu Grunde liegen, um neue therapeutische Zielmoleküle zu identifizieren. Cofilin, ein Protein das das Aktinzytoskellet reguliert, ist in anderen Krebsarten als wichtiger Regulator des invasiven Verhaltens von Zellen bekannt und das Aktinzytoskellet ist an der Bildung einer Vielzahl von zellulären Strukturen beteiligt, die wichtig für die Zellmigration und –invasion sind. Cofilin wird über die Phosphorylierung einer einzigen Aminosäure, des Serin 3, reguliert. Das Ziel dieser Arbeit war es, die Rolle der Cofilin regulatorischen Phosphatase Chronophin für Zellmigration und -invasion zu untersuchen. Zuerst konnte gezeigt werden, dass eine Chronophin Depletion in der Zelllinie GBM6840 zu einer Zunahme des Anteils von P-Cofilin am Gesamtcofilin führt. Ebenso war ein hohes Chronophin Level in den Zelllinien GBM6840 und U87 mit einer Abnahme des F-Actin Levels korreliert, was in einem Aktin spin down Assay als auch mittels Durchflusszytrometrie gemessen werden konnte. Es konnte weiter gezeigt werden, dass eine shRNA vermittelte Depletion des Chronphin zu einer starken Zunahme der Invasivität in den Zelllinien GBM6840 und DBTRG-05-MG in vitro führt. Chronophin Expression in der Zelllinie U87 führte zu einer starken Abnahme der Invasivität. Es gab hingegen keinen Chronophin abhängigen Unterschied in der Proliferation von GBM6840 und DBTRG-05-MG Zellen, die entweder eine Kontroll- oder eine Chronophin gerichtete shRNA exprimierten, sowie keinen zwischen U87 Zellen, die mit einem Leervektor oder einem Chronophin codierenden Konstrukt transfiziert worden waren. Die Zunahme der Invasion nach Chronophin Depletion konnte mit einer Zunahme der Direktionalität der Zellen bei der Migration in einer 2D Umgebung korreliert werden. Desweiteren konnte durch Behandlung mit dem ROCK-Inhibitor Y-27632 in GBM6840 Zellen eine Erniedrigung der Direktionalität bei der Migration in 2D Kultur ebenso erreicht werden, wie eine Reduktion der Invasivität von Chronophin shRNA exprimierenden GBM6840 Zellen auf Kontrollniveau. Die Expression einer nicht-phosphorylierbaren Cofilin Mutante, der S3A Mutante, erniedrigte sowohl die Direktionalität in der 2D Migration als auch die Invasivität von GBM6840 Chronophin shRNA exprimierenden Zellen zurück auf Kontrollniveau. Diese Experimente lieferten wichtige Hinweise darauf, dass die Phosphoregulation von Cofilin ursächlich an der Entstehung der Phänotypen beteiligt war, die nach Chronophin Knockdown beobachtet wurden. In vivo konnte nach Injektion in NOD-SCID Mäuse eine dramatische Wachstumsreduktion der Chronophin depletierten Zellen gemessen werden. Durch Charakterisierung des Transkriptoms der Zelllinie GBM6840 mittels Microarrays und nachfolgender Vergleich der Ergebnisse mit Microarray-Profilen von Normalhirngewebe und verschiedenen Gliomentitäten konnten zwei spezifisch Chronophin abhängig regulierte Transkripte identifiziert werden, MXI1 und EDIL3, die potentiell mit der Progression und Invasivität von Gliomen verknüpft sind. MXI1, ein potentieller negativer Regulator der c-myc abhängigen Transkription, war nach Chronophin Herunterregulation in GBM6840 stark herunterreguliert. In Übereinstimmung mit diesem Befund war die Aktiviät eines c-myc Reporterplasmids nach Chronophin Herunterregulation in GBM6840 erhöht, nach Chronophin Expression in U87 jedoch erniedrigt. Das c-myc Protein selbst wies eine deutliche Reduktion nach Chronophin Depletion in GBM6840 auf. Abschließend wurde die Expression von Proteasen untersucht, für die eine Rolle in der Gliominvasion bekannt ist. Hier wurden jedoch keine größeren Chronophin abhängigen Expressionsunterschiede gefunden. Zusammenfassend gesagt konnte eine umfassende Charakterisierung der Rolle des Chronophin in der Gliompathogenese erreicht werden. Zum einen konnte gezeigt werden, dass Chronophin ein äußerst wichtiger Regulator der Invasion ist, zum anderen dass es zu Chronophin abhängigen transkriptomischen Veränderungen kommt, die potentiell zur Malignisierung des Tumors beitragen. Daher sind die Proteine die die Cofilinphosphorylierung regulieren potentielle therapeutische Zielmoleküle für eine anti-invasive Therapie im Glioblastom. Inhibitoren für die Kinasen, die Regulatoren des Cofilin sind, die ROCK- und LIM-Kinasen, sind verfügbar und stellen möglicherweise vielversprechende Substanzen für die anti-invasive Therapie dar. KW - Zellmigration KW - Chronophin KW - Invasion KW - Glioblastom KW - Gliom KW - PDXP KW - Glioma KW - Glioblastoma KW - Invasion KW - Migration Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-109292 ER - TY - THES A1 - Alexander, Stephanie T1 - Collective cancer cell invasion \(in\) \(vivo\): function of β1 and β3 integrins in perivascular invasion and resistance to therapy T1 - Kollektive Tumorzellinvasion \(in\) \(vivo\): Funktion von β1 und β3 Integrinen in perivaskulärer Invasion und Therapieresistenz N2 - Pro-migratory signals mediated by the tumor microenvironment contribute to the cancer progression cascade, including invasion, metastasis and resistance to therapy. Derived from in vitro studies, isolated molecular steps of cancer invasion programs have been identified but their integration into the tumor microenvironment and suitability as molecular targets remain elusive. The purpose of the study was to visualize central aspects of tumor progression, including proliferation, survival and invasion by real-time intravital microscopy. The specific aims were to monitor the kinetics, mode, adhesion and chemoattraction mechanisms of tumor cell invasion, the involved guidance structures, and the response of invasion zones to anti-cancer therapy. To reach deeper tumor regions by optical imaging with subcellular resolution, near-infrared and infrared excited multiphoton microscopy was combined with a modified dorsal skinfold chamber model. Implanted HT-1080 fibrosarcoma and B16/F10 and MV3 melanoma tumors developed zones of invasive growth consisting of collective invasion strands that retained cell-cell contacts and high mitotic activity while invading at velocities of up to 200 μm per day. Collective invasion occurred predominantly along preexisting tissue structures, including blood and lymph vessels, collagen fibers and muscle strands of the deep dermis, and was thereby insensitive to RNAi based knockdown and/or antibody-based treatment against β1 and β3 integrins, chemokine (SDF-1/CXCL12) and growth factor (EGF) signaling. Therapeutic hypofractionated irradiation induced partial to complete regression of the tumor main mass, yet failed to eradicate the collective invasion strands, suggesting a microenvironmentally privileged niche. Whereas no radiosensitization was achieved by interference with EGFR or doxorubicin, the simultaneous inhibition of β1 and β3 integrins impaired cell proliferation and survival in spontaneously growing tumors and strongly enhanced the radiation response up to complete eradication of both main tumor and invasion strands. In conclusion, collective invasion in vivo is a robust process which follows preexisting tissue structures and is mainly independent of established adhesion and chemoattractant signaling. Due to its altered biological response to irradiation, collective invasion strands represent a microenvironmentally controlled and clinically relevant resistance niche to therapy. Therefore supportive regimens, such as anoikisinduction by anti-integrin therapy, may serve to enhance radio- and chemoefficacy and complement classical treatment regimens. N2 - Die Progression von Tumorerkrankungen, einschließlich Tumorinvasion, Metastasierung und Therapieresistenz wird unter anderem durch migrationsfördernde Signale aus der Tumorumgebung vermittelt. Zur bisherigen Aufklärung einzelner Schritte des Tumorinvasions- und Progressionsprogramms trugen dabei wesentlich In-vitro-Studien bei, jedoch erfordert die Darstellung der Relevanz molekularer Zielstrukturen und deren Funktion im Tumormikromilieu die Validierung in geeigneten In-vivo-Tumormodellen. Ziel dieser Studie war, zelluläre und molekulare Mechanismen der Tumorprogression inklusive Proliferation, Überleben und Invasion mittels Echtzeit-Intravitalmikroskopie darzustellen. Untersucht wurden insbesondere die Kinetik und Arten der Tumorzellinvasion, die zugrunde liegenden Adhäsionswege und pro-migratorischen Signale (EGF, SDF-1), beteiligte Leitstrukturen des Tumorstromas, und Strategien, therapeutisch gegen Invasionszonen vorzugehen. Um tiefe Tumorareale mittels subzellulär aufgelöster optischer Bildgebung zu erreichen, wurde nah-infrarote und infrarote Multiphotonenmikroskopie mit einem modifizierten Rückenkammermodell kombiniert. Orthotope Xeno- und Allotransplantate von HT-1080-Fibrosarkom- und B16/F10- oder MV3-Melanomzellen entwickelten dabei ausgeprägte invasive Wachstumszonen bestehend aus kollektiven Invasionssträngen mit intakten Zell-Zell-Kontakten und zeitgleicher Mitoseaktivität, die Geschwindigkeiten von bis zu 200 μm pro Tag erreichten. Diese kollektive Invasion orientierte sich bevorzugt entlang von Funktionsstrukturen der tiefen Dermis wie Blut- und Lymphgefäßen, Kollagenfasern und Muskelsträngen. RNAibasierende Herrunterregulation und/oder Injektion blockierender Antikörper gegen β1 und β3 Integrine, wie auch Inhibition von EGF führten nur zu minimaler Änderung der Invasionseffizienz. Therapeutische hypofraktionierte Bestrahlung induzierte partielle bis komplette Regression der Tumorhauptmasse, nicht jedoch der kollektiven Invasionsstränge, was auf eine kombinierte Invasions- und Resistenznische hinweist. Weder Doxorubicin noch gegen EGFR gerichtete Antikörper steigerten die Radiosensitivität, jedoch führte die simultane Inhibition von β1 und β3 Integrinen zu einer starken Hemmung von Proliferation und Überleben spontan wachsender Tumoren (Anoikis) und verstärkte die Strahlungssensitivität bis hin zum kompletten Verschwinden von sowohl Tumorhauptmasse wie auch Invasionsträngen. Kollektive Invasion ist somit ein wichtiger Invasionsmodus, der sich an vorbestehenden Gewebsstrukturen orientiert und unabhängig von Integrinen und EGF- und SDF-1-Signalen erfolgt. Die kollektiven Stränge entwickeln dabei eine vom Haupttumor verschiedene biologische Reaktion auf Bestrahlung und entsprechen damit einer durch die Mikroumgebung kontrollierten und von Integrinsignalen abhängenden Resistenznische. Somit könnte eine zusätzliche anti- Integrin-Therapie die Effizienz von Bestrahlung und Chemotherapie erhöhen und klassische Behandlungsschemen/-programme ergänzen. KW - Tumorzelle KW - Kollektive Invasion KW - Multiphotonenmikroskopie KW - Integrine KW - collective invasion KW - multiphoton microscopy KW - integrins KW - Invasion KW - Integrine Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85435 ER -