TY - JOUR A1 - Dreyer, Ingo A1 - Gomez-Porras, Judith Lucia A1 - Riaño-Pachón, Diego Mauricio A1 - Hedrich, Rainer A1 - Geiger, Dietmar T1 - Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs) JF - Frontiers in Plant Science N2 - Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant) SLAC-like and 422 (402 non-redundant) ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general. KW - anion channel KW - evolution KW - SLAC/SLAH KW - ALMT KW - QUAC KW - voltage dependent KW - topology KW - phosphorylation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189345 SN - 1664-462X VL - 3 ER - TY - THES A1 - Kubisch, Alexander T1 - Range border formation in the light of dispersal evolution T1 - Die Ausbildung von Verbreitungsgrenzen unter Berücksichtigung der Evolution des Ausbreitungsverhaltens N2 - Understanding the emergence of species' ranges is one of the most fundamental challenges in ecology. Early on, geographical barriers were identified as obvious natural constraints to the spread of species. However, many range borders occur along gradually changing landscapes, where no sharp barriers are obvious. Mechanistic explanations for this seeming contradiction incorporate environmental gradients that either affect the spatio-temporal variability of conditions or the increasing fragmentation of habitat. Additionally, biological mechanisms like Allee effects (i.e. decreased growth rates at low population sizes or densities), condition-dependent dispersal, and biological interactions with other species have been shown to severely affect the location of range margins. The role of dispersal has been in the focus of many studies dealing with range border formation. Dispersal is known to be highly plastic and evolvable, even over short ecological time-scales. However, only few studies concentrated on the impact of evolving dispersal on range dynamics. This thesis aims at filling this gap. I study the influence of evolving dispersal rates on the persistence of spatially structured populations in environmental gradients and its consequences for the establishment of range borders. More specially I investigate scenarios of range formation in equilibrium, periods of range expansion, and range shifts under global climate change ... N2 - Die Frage nach den Ursachen für die Ausbildung von Verbreitungsgrenzen ist ein zentrales Thema ökologischer Forschung. Dabei wurde die Bedeutung geographischer Barrieren als natürliche Grenzen der Ausbreitung von Populationen früh erkannt. Jedoch findet man oft auch in sich graduell ändernden Landschaften, in denen keine Barrieren zu finden sind, sehr scharfe Verbreitungsgrenzen. Mechanistische Erklärungen hierfür unterscheiden zwischen solchen Umweltgradienten, welche entweder die Variabilität der biotischen und abiotischen Umgebung in Raum und Zeit oder die Fragmentierung von Habitat beeinflussen. Dabei wird die spezifische Lage der Verbreitungsgrenze von weiteren Mechanismen beeinflusst, wie Allee-Effekten (d.h. verringerte Wachstumsraten bei kleiner Populationsgröße oder -dichte), zustands- bzw. kontextabhängigem Dispersal und biologischen Interaktionen. Dispersal, das heißt Ausbreitung im Raum mit potentiellen Konsequenzen für den Genaustausch zwischen Populationen, stand im Fokus vieler Studien, die sich mit der Ausbildung von Verbreitungsgrenzen beschäftigt haben. Es ist bekannt, dass das Ausbreitungsverhalten von Populationen sehr variabel ist und selbst innerhalb kurzer Zeit evolvieren kann. Trotzdem haben sich erst wenige Studien mit den Folgen der Evolution des Ausbreitungsverhaltens für biogeographische Muster befasst. Die vorliegende Dissertation verfolgt das Ziel, diese Lücke zu füllen. Ich untersuche den Einfluss evolvierender Emigrationsraten auf das Überleben von räumlich strukturierten Populationen, sowie dessen Konsequenzen für die Etablierung und Dynamik von Verbreitungsgebieten. Dafür ziehe ich verschiedene Szenarien heran. Diese bilden die Verbreitung von Arten im Gleichgewicht, während Phasen der Expansion des Verbreitungsgebietes, sowie im Kontext des globalen Klimawandels ab ... KW - Areal KW - Verhalten KW - Evolution KW - Simulation KW - Verbreitungsgrenzen KW - Ausbreitung KW - Invasion KW - range formation KW - dispersal KW - evolution KW - individual-based simulation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70639 ER -