TY - THES A1 - Herrmann, Christian T1 - Robotic Motion Compensation for Applications in Radiation Oncology T1 - Robotergestützte Bewegungskompensation für Anwendungen in der Radioonkologie N2 - Aufgrund vieler Verbesserungen der Behandlungsmethoden im Laufe der letzten 60 Jahre, erlaubt die Strahlentherapie heutzutage präzise Behandlungen von statischen Tumoren. Jedoch birgt die Bestrahlung von sich bewegenden Tumoren noch große Herausforderungen in sich, da bewegliche Tumore oft den Behandlungsstrahl verlassen. Dabei reduziert sich die Strahlendosis im Tumor während sich diese im umliegenden gesunden Gewebe erhöht. Diese Forschungsarbeit zielt darauf ab, die Grenzen der Strahlentherapie zu erweitern, um präzise Behandlungen von beweglichen Tumoren zu ermöglichen. Der Fokus der Arbeit liegt auf der Erstellung eines Echtzeitsystems zur aktiven Kompensation von Tumorbewegungen durch robotergestützte Methoden. Während Behandlungen befinden sich Patienten auf einer Patientenliege, mit der statische Lagerungsfehler vor Beginn einer Behandlung korrigiert werden. Die in dieser Arbeit verwendete Patientenliege "HexaPOD" ist ein paralleler Manipulator mit sechs Freiheitsgraden, der große Lasten innerhalb eines eingeschränkten Arbeitsbereichs präzise positionieren kann. Obwohl der HexaPOD ursprünglich nicht für dynamische Anwendungen konzipiert wurde, wird dieser für eine dauerhafte Bewegungskompensation eingesetzt, in dem Patienten so bewegt werden, dass Tumore präzise im Zentralstrahl während der Dauer einer gesamten Behandlung verbleiben. Um ein echtzeitfähiges Kompensationssystem auf Basis des HexaPODs zu realisieren, muss eine Reihe an Herausforderungen bewältigt werden. Echtzeitaspekte werden einerseits durch die Verwendung eines harten Echtzeitbetriebssystems abgedeckt, andererseits durch die Messung und Schätzung von Latenzzeiten aller physikalischen Größen im System, z.B. Messungen der Tumor- und Atemposition. Neben der konsistenten und durchgängigen Berücksichtigung von akkuraten Zeitinformation, werden alle software-induzierten Latenzen adaptiv ausgeglichen. Dies erfordert Vorhersagen der Tumorposition in die nahe Zukunft. Zahlreiche Prädiktoren zur Atem- und Tumorpositionsvorhersage werden vorgeschlagen und anhand verschiedenster Metriken evaluiert. Erweiterungen der Prädiktionsalgorithmen werden eingeführt, die sowohl Atem- als auch Tumorpositionsinformationen fusionieren, um Vorhersagen ohne explizites Korrelationsmodell zu ermöglichen. Die Vorhersagen bestimmen den zukünftigen Bewegungspfad des HexaPODs, um Tumorbewegungen zu kompensieren. Dazu werden verschiedene Regler entwickelt, die eine Trajektorienverfolgung mit dem HexaPOD ermöglichen. Auf der Basis von linearer und nicht-linearer dynamischer Modellierung des HexaPODs mit Methoden der Systemidentifikation, wird zunächst ein modellprädiktiver Regler entwickelt. Ein zweiter Regler wird auf Basis einer Annahme über das Arbeitsprinzip des internen Reglers im HexaPOD entworfen. Schließlich wird ein dritter Regler vorgeschlagen, der beide vorhergehenden Regler miteinander kombiniert. Für jeden dieser Regler werden vergleichende Ergebnisse aus Experimenten mit realer Hardware und menschlichen Versuchspersonen präsentiert und diskutiert. Darüber hinaus wird die geeignete Wahl von freien Parametern in den Reglern vorgestellt. Neben einer präzisen Verfolgung der Referenztrajektorie spielt der Patientenkomfort eine entscheidende Rolle für die Akzeptanz des Systems. Es wird gezeigt, dass die Regler glatte Trajektorien realisieren können, um zu garantieren, dass sich Patienten wohl fühlen während ihre Tumorbewegung mit Genauigkeiten im Submillimeterbereich ausgeglichen wird. Gesamtfehler werden im Kompensationssystem analysiert, in dem diese zu Trajektorienverfolgungsfehlern und Prädiktionsfehlern in Beziehung gesetzt werden. Durch Ausnutzung von Eigenschaften verschiedener Prädiktoren wird gezeigt, dass die Startzeit des Systems bis die Verfolgung der Referenztrajektorie erreicht ist, wenige Sekunden beträgt. Dies gilt insbesondere für den Fall eines initial ruhenden HexaPODs und ohne Vorwissen über Tumorbewegungen. Dies zeigt die Eignung des Systems für die sehr kurz fraktionierten Behandlungen von Lungentumoren. Das Tumorkompensationssystem wurde ausschließlich auf Basis von klinischer Standard-Hardware entwickelt, die in vielen Behandlungsräumen zu finden ist. Durch ein einfaches und flexibles Design können Behandlungsräume in kosteneffizienter Weise um Möglichkeiten der Bewegungskompensation ergänzt werden. Darüber hinaus werden aktuelle Behandlungsmethoden wie intensitätsmodulierte Strahlentherapie oder Volumetric Modulated Arc Therapy in keiner Weise eingeschränkt. Aufgrund der Unterstützung verschiedener Kompensationsmodi kann das System auf alle beweglichen Tumore angewendet werden, unabhängig davon ob die Bewegungen vorhersagbar (Lungentumore) oder nicht vorhersagbar (Prostatatumore) sind. Durch Integration von geeigneten Methoden zur Tumorpositionsbestimmung kann das System auf einfache Weise zur Kompensation von anderen Tumoren erweitert werden. N2 - Radiation therapy today, on account of improvements in treatment procedures over the last 60 years, allows precise treatment of static tumors inside the human body. However, irradiation of moving tumors is still a challenging task as moving tumors often leave the treatment beam and the radiation dose delivered to the tumor reduces simultaneously increasing that on healthy tissue. This research work aims to push the frontiers of radiation therapy in order to enable precise treatment of moving tumors with focus on research and development of a unique real-time system enabling active motion compensation through robotic means to compensate tumor motion. During treatment, patients lie on a treatment couch which is normally used for static position corrections of patient set-up errors prior to radiation treatment. The treatment couch used, called HexaPOD, is a parallel manipulator with six degrees of freedom which can precisely position heavy loads inside a small region. Despite the HexaPOD not initially built with dynamics in mind, it is used in this work for sustained motion compensation by moving patients such that tumors stay precisely located at the center of the treatment beam during the complete course of treatment. In order to realize real-time tumor motion compensation by means of the HexaPOD, several challanges need to be addressed. Real-time aspects are covered by the adoption of a hard real-time operation system in combination with measurement and estimation of latencies of all physical quantities in the compensation system such as tumor or breathing position measurements. Accurate timing information is respected consistently in the whole system and all software-induced latencies are adaptively compensated for. This requires knowledge of future tumor positions from predictors. Several predictors for breathing and tumor motion predictions are proposed and evaluated in terms of a variety of different performance metrics. Extensions to prediction algorithms are introduced fusing both breathing and tumor position information to allow for predictions without the need of an explicit correlation model. Predictions determine the future motion path of the HexaPOD in order to compensate for tumor motion. Several control schemes are developed to enable reference tracking for the HexaPOD. Based on linear and non-linear dynamic modelling of the HexaPOD with system identification methods, a first controller is derived in the form of a model predictive controller. A second controller is proposed based on an assumption of the working principle of the HexaPOD's internal controller. Finally, a third controller is derived as combination of the first and second one. For each of these controllers, comparative results with real hardware experiments and humans in the loop as well as choices of free parameters are presented and discussed. Apart from precise tracking, emphasis is placed on patient comfort which is of crucial importance for acceptance of the system. It is demonstrated that smooth trajectories can be realized by the controllers to guarantee that patients feel comfortable while their tumor motion is compensated at sub-millimeter accuracies. Overall errors of the system are analyzed by relating them to tracking and prediction errors. By exploiting the properties of different predictors, it is shown that the startup time until tracking is reached can be reduced to only a few seconds, even in the case of an initially at-rest HexaPOD and with no initial knowledge of tumor motion. This makes the system especially suitable for the relatively short-fractionated treatment sessions for lung tumors. The tumor motion compensation system has been developed solely based on standard clinical hardware, found in most treatment rooms. With a simple and flexible design, existing treatment can be updated in a cost-efficient way to introduce motion compensation capabilities. Simultaneously, the system does not impose any constraints on state-of-the-art treatment types such as intensity modulated radiotherapy or volumetric modulated arc therapy. Supporting different compensation modes, the system can be applied to any moving tumor whether its motion is predictable (lung tumors) or unpredictable (prostate tumors). By integration of adequate tumor position determination methods, the system can be easily extended to other tumors as well. T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 7 KW - Robotik KW - Bewegungskompensation KW - Regelung KW - Strahlentherapie KW - Vorhersage KW - Tumorbewegung KW - Echzeit KW - Prediction KW - Tumor motion KW - Real-time Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79045 SN - 978-3-923959-88-4 ER - TY - THES A1 - Roesch, Johannes T1 - Der Einfluss von Rotations- und Translationsbewegungen bei kranieller stereotaktischer Radiotherapie T1 - Impact of rotational and translational set-up errors in cranial stereotactic radiotherapy N2 - Hintergrund: Kranielle Stereotaxie ist ein wichtiges Therapieinstrument zur Behandlung kranieller neoplastischer Läsionen. Mittels bildgeführter Radiotherapie konnten in den vergangenen Jahren Genauigkeit und Komfort der Patientenlagerung essentiell verbessert werden. Folgende Arbeit untersucht die Bedeutung der bildgeführten Patientenlagerung (Image Guidance) in Bezug auf geometrische Unsicherheiten und deren Einfluss auf die dosimetrische Verteilung. Material und Methoden: In Würzburg wurden zwischen 2006 und 2010, 98 kranielle Läsionen in 71 Patienten radiochirurgisch behandelt. Mittels Cone-Beam CT wurden die Patientenverlagerungen bezogen auf alle 6 Freiheitsgrade vor Behandlungsbeginn (n=98) sowie nach der Therapie (n=64) aufgezeichnet. Aus den Daten für die einzelnen Raumachsen wurde der absolute Versatz (3D-Vektor) sowie maximale Rotation um die resultierende Drehachse berechnet. Die Prae- sowie Posttherapeutische Verlagerungen wurden im Planungssystem simuliert. Für Szenarien mit unterschiedlichen Sicherheitsäumen (0 mm,1 mm, 2 mm) wurde der Ausgleich der Translationen sowie der Rotationen in Bezug auf Dosis-Konformität und Zielabdeckung getrennt untersucht. Ergebnisse: Der mittlere Prae-IG Versatz betrug 3.96 mm ± 1.89 mm mit einer mittleren maximalen Rotation im Raum von 2,02°±0,84°. Der mittlere Lagerungsfehler nach Therapieende betrug 0,88mm±0,61mm mit einer mittleren maximalen Rotation von 0,65°±0,64°. Die Verlagerung während der Bestrahlung korrelierte signifikant mit der Behandlungszeit (0,7mm±0,5mm für t<23min; 1,2mm±0,7mm für t>23min). Die Simulation der Behandlung ohne IG-Ausgleich zeigte einen Einbruch der Zielabdeckung (Coverage Index) von 96,0%±5,7% auf 72,1%±19,0% und der Konformität (Paddick Conformity Index) von 73,3%±11,1% auf 43,4%±17,8%. Pro 1mm Abweichung nahmen Zielabdeckung sowie Konformität um 6% bzw. 10% ab. Alleiniger Ausgleich der Translationen ohne Rotationen führte zu nicht signifikanten Einbussen. Bewegungen während der Bestrahlung führten zu einem Abfall des CI auf 94,3%±6,8% bzw. des PCI auf 70,4%±10,8%. Ein 1mm Sicherheitssaum genügte um diese Bewegungen zu kompensieren Schlussfolgerungen: Bildgeführte Radiotherapie ist ein wichtiges Instrument zur Verbesserung der Therapiepräzision. Unter offensichtlichen Voraussetzungen kann auf den prätherapeutischen Ausgleich der rotatorischen Komponente bei kranieller Stereotaxie verzichtet werden. Bewegungen während der Behandlung reduzieren die gewünschte Zielabdeckung sofern dem nicht durch geeignete Sicherheitssäume Rechnung getragen wird. N2 - Background: Cranial Stereoactic Radiotherapy is an importent instrument for treatment of cranial neoplastic lesions. Over the last years image guidance improved Precesion an comfort of patient setup and treatment essentially. Outcome of IG evaluated in geometrical uncertainties and this impact on dosimetrical coverage is evaluated. Methods and materials: In the department of Radio-oncology in Würzburg 98 cranial lesions in 71 patients were treated with radiosurgery between 2006 and 2010. Pre- (n=98) and Post-treatment (n=64) set-up errors (n=98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom. To evaluated geometrical uncertainties 3D-error and maximal rotation around the resulting rotational-axis was calculated. Pre- and post-therapy set-up-errors were simulated inside the planning system and there impact on dosedistribution was evaluated. Scenarios with different safety margins (0mm, 1mm, 2mm) were simulated and impact of translational and rotational set-up error was evaluated separately. Results: Errors prior to IG were 3.96 mm ± 1.89 mm (3D vector) and the mid-maximum rotational error was 2.02° ± 0.84°. The post-treatment 3D error was 0.88 mm ± 0.61 mm and the mid-maximum rotation was 0,65°±0,64°. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage from 96,0%±5,7% to 72,1%±19,0% and conformity from 73,3%±11,1% to 43,4%±17,8%. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6% and 10% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage to 94,3%±6,8% and conformity to 70,4%±10,8% . A 1 mm safety margin fully compensated intra-fractional patient motion. Conclusions IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Under certain assumptions correction of rotational set-up errors in cranial stereotactic radiotherapy can be neglected. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate safety margins. KW - Radiochirurgie KW - Strahlentherapie KW - Verlagerung KW - Schädel KW - Tumor KW - saftey margin KW - radiosurgery KW - set-up error KW - Translational and rotational motion Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106137 ER -