TY - THES A1 - Gan, Qiang T1 - Investigation on Distinct Roles of Smad Proteins in Mediating Bone Morphogenetic Proteins Signals T1 - Untersuchung auf Unterschiedliche Rollen von Smad Proteinen in der Signalübertragung der Knochenmorphogenetischen Proteine N2 - Knochenmorphogenetische Proteine (engl. Bone morphogenetic Proteins, BMPs) sind eine Bestandteil von transforming growth factor-β (TGF-β)-Superfamilie und spielen wichtige Rollen in zahlreichen biologischen Ereignissen in der Entwicklung fast aller mehrzelligen Organismen. Fehlregulierte BMP-Signalweg ist die zugrunde liegenden Ursachen von zahlreichen erblichen und nicht erblichen Krankheiten wie Krebs. Die von BMP induziete breite Palette von biologischen Reaktionen konvergiert auf drei eng verwandten Smad Proteine. Sie vermitteln intrazelluläre Signale von BMP-Rezeptoren in den Zellkern. Die Spezifität des BMP-Signalwegs wurde intensiv auf der Ebene der Ligand-Rezeptor-Wechselwirkungen erforscht, aber, wie die verschiedenen Smad Proteine die durch BMPs hervorgerufen differenziellen Signale beitragen, bleibt unklar. In dieser Arbeit haben wir die BMP / Smad Signalweg in verschiedenen Aspektenuntersucht. Auf der Suche nach einem geeigneten Fluoreszenz-Reporter im Zebrafisch, verglichen wir verschiedene photo-schaltbaren Proteine und fand EosFP der beste Kandidat für diesen Modellorganismus im Bezug auf seine schnelle Reifung und Fluoreszenz-Intensität. Wir haben durch molekulare Modifizierung geeignete Vektoren erstellt, die Tol2-Transposon basieren trangenesis im Zebrafisch zu ermöglichen. Damit wurden schließlich transgenzebrafisch-Linien erzeugt. Wir kombinierten Fluoreszenz-Protein-Tagging mit hochauflösender Mikroskopie und untersuchten die Dynamik der Smad-Proteine in Modellsystem Zebrafisch. Es wurde beobachteten, dass Smad5 Kern-Translokation erfährt, als BMP Signalgeber bei Zebrafisch Gastrulation. Wir erkundeten die Beteiligung der Smad Proteine während der Myogenese-zu-Osteogenese Umwandlung von C2C12 Zelllinie, die durch BMP4 induziert wurde. Mit siRNA versuchten wir die endogene Smad Proteine niederzuschlagen, wobei die Auswirkungen auf diesen gekoppelten noch unterschiedlichen Verfahren durch quantitative real-time PCR und Terminal-Marker Färbung ausgewertet. Wir spekulieren, dass verschiedene Smad-Komplex Stöchiometrie für unterschiedliche durch BMPs hervorgerufe zelluläre Signale verantwortlich sein könnte. N2 - Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-β (TGF-β) superfamily and play important roles in numerous biological events in the development of almost all multi-cellular organisms. Dysregulated BMP signaling is the underlying causes of numerous heritable and non-heritable human diseases including cancer. The vast range of biological responses induced by BMPs converges on three closely related Smad proteins that convey intracellular signals from BMP receptors to the nucleus. The specificity of BMP signaling has been intensively investigated at the level of ligand-receptor interactions, but how the different Smad proteins contribute to differential signals elicited by BMPs remains unclear. In this work, we investigated the BMP/Smad signaling in different aspects. In search for an appropriate fluorescence reporter in zebrafish, we compared different photo-switchable proteins and found EosFP the best candidate this model system for its fast maturation and fluorescence intensity. We modified and created appropriate vectors enabling Tol2-transposon based trangenesis in zebrafish, with which transgenic zebrafish lines were generated. We combined fluorescence protein tagging with high resolution microscopy and investigate the dynamics of Smad proteins in model system zebrafish. We observed that Smad5 undergoes nucleo-translocation as BMP signal transmitter during zebrafish gastrulation. We explored the Smad involvement during myogenic-to-osteogenic conversion of C2C12 cell line induced by BMP4. We created transient loss-of-function of Smads by siRNA-mediated knockdowns and analyzed the effects on these coupled yet distinct procedures by quantitative real-time PCR and terminal marker staining. We found that different Smad-complex stoichiometry might be responsible for distinct cellular signals elicited by BMPs. KW - Knochen-Morphogenese-Proteine KW - Zebrabärbling KW - Signaltransduktion KW - Bone morphogenetic proteins KW - Smad KW - Signaling KW - Zebrafish KW - Cell line KW - Differentiation KW - Differenzierung KW - Zelllinie KW - Zebrafisch Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71127 ER - TY - JOUR A1 - Bert, Bettina A1 - Chmielewska, Justyna A1 - Bergmann, Sven A1 - Busch, Maximilian A1 - Driever, Wolfgang A1 - Finger-Baier, Karin A1 - Hößler, Johanna A1 - Köhler, Almut A1 - Leich, Nora A1 - Misgeld, Thomas A1 - Nöldner, Torsten A1 - Reiher, Annegret A1 - Schartl, Manfred A1 - Seebach-Sproedt, Anja A1 - Thumberger, Thomas A1 - Schönfelder, Gilbert A1 - Grune, Barbara T1 - Considerations for a European animal welfare standard to evaluate adverse phenotypes in teleost fish JF - The EMBO Journal N2 - No abstract available. KW - Danio-rerio KW - Zebrafish KW - Pain Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188783 VL - 35 IS - 11 ER - TY - JOUR A1 - Kaltdorf, Kristin Verena A1 - Schulze, Katja A1 - Helmprobst, Frederik A1 - Kollmannsberger, Philip A1 - Dandekar, Thomas A1 - Stigloher, Christian T1 - Fiji macro 3D ART VeSElecT: 3D automated reconstruction tool for vesicle structures of electron tomograms JF - PLoS Computational Biology N2 - Automatic image reconstruction is critical to cope with steadily increasing data from advanced microscopy. We describe here the Fiji macro 3D ART VeSElecT which we developed to study synaptic vesicles in electron tomograms. We apply this tool to quantify vesicle properties (i) in embryonic Danio rerio 4 and 8 days past fertilization (dpf) and (ii) to compare Caenorhabditis elegans N2 neuromuscular junctions (NMJ) wild-type and its septin mutant (unc-59(e261)). We demonstrate development-specific and mutant-specific changes in synaptic vesicle pools in both models. We confirm the functionality of our macro by applying our 3D ART VeSElecT on zebrafish NMJ showing smaller vesicles in 8 dpf embryos then 4 dpf, which was validated by manual reconstruction of the vesicle pool. Furthermore, we analyze the impact of C. elegans septin mutant unc-59(e261) on vesicle pool formation and vesicle size. Automated vesicle registration and characterization was implemented in Fiji as two macros (registration and measurement). This flexible arrangement allows in particular reducing false positives by an optional manual revision step. Preprocessing and contrast enhancement work on image-stacks of 1nm/pixel in x and y direction. Semi-automated cell selection was integrated. 3D ART VeSElecT removes interfering components, detects vesicles by 3D segmentation and calculates vesicle volume and diameter (spherical approximation, inner/outer diameter). Results are collected in color using the RoiManager plugin including the possibility of manual removal of non-matching confounder vesicles. Detailed evaluation considered performance (detected vesicles) and specificity (true vesicles) as well as precision and recall. We furthermore show gain in segmentation and morphological filtering compared to learning based methods and a large time gain compared to manual segmentation. 3D ART VeSElecT shows small error rates and its speed gain can be up to 68 times faster in comparison to manual annotation. Both automatic and semi-automatic modes are explained including a tutorial. KW - Biology KW - Vesicles KW - Caenorhabditis elegans KW - Zebrafish KW - Septins KW - Synaptic vesicles KW - Neuromuscular junctions KW - Computer software KW - Synapses Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172112 VL - 13 IS - 1 ER - TY - JOUR A1 - Blümel, Rabea A1 - Zink, Miriam A1 - Klopocki, Eva A1 - Liedtke, Daniel T1 - On the traces of tcf12: Investigation of the gene expression pattern during development and cranial suture patterning in zebrafish (Danio rerio) JF - PLoS ONE N2 - The transcription factor 12 (tcf12) is a basic Helix-Loop-Helix protein (bHLH) of the E-protein family, proven to play an important role in developmental processes like neurogenesis, mesoderm formation, and cranial vault development. In humans, mutations in TCF12 lead to craniosynostosis, a congenital birth disorder characterized by the premature fusion of one or several of the cranial sutures. Current research has been primarily focused on functional studies of TCF12, hence the cellular expression profile of this gene during embryonic development and early stages of ossification remains poorly understood. Here we present the establishment and detailed analysis of two transgenic tcf12:EGFP fluorescent zebrafish (Danio rerio) reporter lines. Using these transgenic lines, we analyzed the general spatiotemporal expression pattern of tcf12 during different developmental stages and put emphasis on skeletal development and cranial suture patterning. We identified robust tcf12 promoter-driven EGFP expression in the central nervous system (CNS), the heart, the pronephros, and the somites of zebrafish embryos. Additionally, expression was observed inside the muscles and bones of the viscerocranium in juvenile and adult fish. During cranial vault development, the transgenic fish show a high amount of tcf12 expressing cells at the growth fronts of the ossifying frontal and parietal bones and inside the emerging cranial sutures. Subsequently, we tested the transcriptional activity of three evolutionary conserved non-coding elements (CNEs) located in the tcf12 locus by transient transgenic assays and compared their in vivo activity to the expression pattern determined in the transgenic tcf12:EGFP lines. We could validate two of them as tcf12 enhancer elements driving specific gene expression in the CNS during embryogenesis. Our newly established transgenic lines enhance the understanding of tcf12 gene regulation and open up the possibilities for further functional investigation of these novel tcf12 enhancer elements in zebrafish. KW - Zebrafish KW - Neurons KW - Skull KW - Enhancer elements KW - Hindbrain KW - Cranial sutures KW - Embryos KW - Somites Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201428 VL - 14 IS - 6 ER - TY - THES A1 - Lüffe, Teresa Magdalena T1 - Behavioral and pharmacological validation of genetic zebrafish models for ADHD T1 - Pharmakologische und verhaltensbasierte Validierung genetischer Zebrafischmodelle für ADHS N2 - Attention-deficit/hyperactivity disorder (ADHD) is the most prevalent neurodevelopmental disorder described in psychiatry today. ADHD arises during early childhood and is characterized by an age-inappropriate level of inattention, hyperactivity, impulsivity, and partially emotional dysregulation. Besides, substantial psychiatric comorbidity further broadens the symptomatic spectrum. Despite advances in ADHD research by genetic- and imaging studies, the etiopathogenesis of ADHD remains largely unclear. Twin studies suggest a heritability of 70-80 % that, based on genome-wide investigations, is assumed to be polygenic and a mixed composite of small and large, common and rare genetic variants. In recent years the number of genetic risk candidates is continuously increased. However, for most, a biological link to neuropathology and symptomatology of the patient is still missing. Uncovering this link is vital for a better understanding of the disorder, the identification of new treatment targets, and therefore the development of a more targeted and possibly personalized therapy. The present thesis addresses the issue for the ADHD risk candidates GRM8, FOXP2, and GAD1. By establishing loss of function zebrafish models, using CRISPR/Cas9 derived mutagenesis and antisense oligonucleotides, and studying them for morphological, functional, and behavioral alterations, it provides novel insights into the candidate's contribution to neuropathology and ADHD associated phenotypes. Using locomotor activity as behavioral read-out, the present work identified a genetic and functional implication of Grm8a, Grm8b, Foxp2, and Gad1b in ADHD associated hyperactivity. Further, it provides substantial evidence that the function of Grm8a, Grm8b, Foxp2, and Gad1b in activity regulation involves GABAergic signaling. Preliminary indications suggest that the three candidates interfere with GABAergic signaling in the ventral forebrain/striatum. However, according to present and previous data, via different biological mechanisms such as GABA synthesis, transmitter release regulation, synapse formation and/or transcriptional regulation of synaptic components. Intriguingly, this work further demonstrates that the activity regulating circuit, affected upon Foxp2 and Gad1b loss of function, is involved in the therapeutic effect mechanism of methylphenidate. Altogether, the present thesis identified altered GABAergic signaling in activity regulating circuits in, presumably, the ventral forebrain as neuropathological underpinning of ADHD associated hyperactivity. Further, it demonstrates altered GABAergic signaling as mechanistic link between the genetic disruption of Grm8a, Grm8b, Foxp2, and Gad1b and ADHD symptomatology like hyperactivity. Thus, this thesis highlights GABAergic signaling in activity regulating circuits and, in this context, Grm8a, Grm8b, Foxp2, and Gad1b as exciting targets for future investigations on ADHD etiopathogenesis and the development of novel therapeutic interventions for ADHD related hyperactivity. Additionally, thigmotaxis measurements suggest Grm8a, Grm8b, and Gad1b as interesting candidates for prospective studies on comorbid anxiety in ADHD. Furthermore, expression analysis in foxp2 mutants demonstrates Foxp2 as regulator of ADHD associated gene sets and neurodevelopmental disorder (NDD) overarching genetic and functional networks with possible implications for ADHD polygenicity and comorbidity. Finally, with the characterization of gene expression patterns and the generation and validation of genetic zebrafish models for Grm8a, Grm8b, Foxp2, and Gad1b, the present thesis laid the groundwork for future research efforts, for instance, the identification of the functional circuit(s) and biological mechanism(s) by which Grm8a, Grm8b, Foxp2, and Gad1b loss of function interfere with GABAergic signaling and ultimately induce hyperactivity. N2 - Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS) ist mit einer weltweiten Prävalenz von rund 5 % die am häufigsten vorkommende Neuroentwicklungsstörung. Das Krankheitsbild, das zumeist im Kindesalter auftritt und bis ins Erwachsenenalter bestehen kann, zeigt sich im Wesentlichen durch eine Beeinträchtigung der Aufmerksamkeit, der Aktivität, der Impuls-kontrolle und zum Teil durch emotionale Dysregulation. Darüber hinaus führt das vermehrte Auftreten von psychischen Begleiterkrankungen (so genannte Komorbiditäten) zu einer komplexen Symptomatik vieler Betroffener, die über die klassischen Merkmale von ADHS hinausgeht. Während das Krankheitsbild vielfach beschrieben wurde, ist die Ätiopathogenese trotz intensiver wissenschaftlicher Bemühungen bis heute weitestgehend ungeklärt. Zwillingsstudien weisen darauf hin, dass ADHS zu 70-80 % erblich bedingt ist. Aufgrund mehrerer Genom-Studien wird vermutet, dass es sich dabei um eine polygene Vererbbarkeit handelt und sowohl kleine (SNPs), verhältnismäßig häufig auftretende, als auch große (CNVs) verhältnismäßig seltene Genpolymorphismen beteiligt sind. Die Anzahl der potenziellen Risikogene für ADHS ist in den letzten Jahren kontinuierlich gestiegen, jedoch ist es nach wie vor unklar, inwiefern und durch welche biologischen Prozesse die meisten zur Neuropathologie und Symptomatik von ADHS Patienten beitragen. Diese Prozesse zu identifizieren ist von zentraler Bedeutung für ein besseres Verständnis der Erkrankung, der Identifizierung neuer Angriffsziele und somit, der Entwicklung gezielterer und möglicherweise personalisierter Behandlungsmöglichkeiten. Die vorliegende Arbeit befasst sich mit diesen Prozessen am Beispiel der potenziellen Risikogene GRM8, FOXP2 und GAD1. Durch die Etablierung und Validierung entsprechender (geneti-scher) Knockout und Knockdown Zebrafischmodelle und der anschließenden Untersuchung auf Verhaltens-, morphologische und funktionelle Veränderungen liefert die vorliegende Dissertation wichtige Erkenntnisse über die funktionelle Relevanz der einzelnen Kandidaten für die Neuropathologie und die Symptomatik von ADHS. Beispielsweise zeigen die erfassten Aktivitätsdaten von Knockdown und Knockout Larven, dass Grm8a, Grm8b, Foxp2 und Gad1b an der Regulation von Bewegungsaktivität beteiligt sind und dass dies, die korrekte Funktion GABAerger Prozesse bedarf. Des Weiteren liefert die Arbeit Hinweise, dass der Effekt im Subpallium/Striatum verankert ist. Jedoch ist aufgrund vorliegender und bereits publizierter Daten anzunehmen, dass im Falle der einzelnen Kandidaten, zum Teil unterschiedliche Me-chanismen wie die Transmittersynthese, die Transmitterfreisetzung, die Synapsenbildung und die Expression synaptischer Komponenten betroffen sind. Interessanterweise scheinen die durch die Kandidaten betroffenen Signalwege außerdem, laut erhobener Daten, am Wirkmechanismus von Methylphenidat beteiligt zu sein. Kurzum, die vorliegende Dissertation identifiziert die Beeinträchtigung GABAerger Signalübertragung eines, mutmaßlich subpallialen/striatalen aktivitäts-regulierenden neuronalen Netzwerks als neurobiologische Grundlage ADHS-assoziierter Hyperaktivität. Gleichzeitig präsentiert die Arbeit diese Prozesse als funktionelles Bindeglied zwischen der genetischen Veränderung von GRM8, FOXP2 und GAD1 und Hyperaktivität in ADHS. Folglich sind die entwicklungs- und neurobiologischen Mechanismen rund um die GABAerge Übertragung in diesem Netzwerk, und in diesem Zusammenhang die Funktion von Grm8a, (Grm8b), Foxp2 und Gad1b, spannende Ziele für zukünftige Projekte zur Erforschung der Ätiopathogenese und der Entwicklung neuer Therapien von Hyperakti-vität in ADHS. Neben der Rolle in ADHS-assoziierter Hyperaktivität, präsentieren die erhobenen Verhaltensdaten Grm8a, Grm8b und Gad1b außerdem, als interessante Kandidaten für die Erforschung komorbider Angststörung in ADHS. Foxp2 dagegen, wurde mit Hilfe einer Genexpressionsanalyse als Regulator zahlreicher ADHS Risikogene und Entwicklungsstörungs-übergreifenden genetischen und funktionellen Netzwerken, mit möglicher Relevanz für die Polygenie und Komorbidität von ADHS, identifiziert. Im Allgemeinen schafft die vorliegende Dissertation mit der Bestimmung der Genexpressionsmuster und Etablierung und Validierung der (genetischen) Zebrafischmodelle für Grm8a, Grm8b, Foxp2 und Gad1b die Grundlage, diese und weitere Aspekte in zukünftigen Forschungsprojekten zu untersuchen. Beispielsweise die Identifizierung der Netzwerke und Mechanismen, mit dessen Hilfe Grm8a, (Grm8b), Foxp2 und Gad1b in die GABAerge Signalübertragung eingreifen und so letztlich die Aktivität beeinflussen. KW - ADHD KW - Zebrafish KW - FOXP2 KW - GRM8 KW - GAD1 KW - Genetic etiology KW - Animal model KW - Thigmotaxis KW - Locomotor activity KW - Hyperactivity Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257168 ER -