TY - JOUR A1 - Rasche, Leo A1 - Kumar, Manoj A1 - Gershner, Grant A1 - Samant, Rohan A1 - Van Hemert, Rudy A1 - Heidemeier, Anke A1 - Lapa, Constantin A1 - Bley, Thorsten A1 - Buck, Andreas A1 - McDonald, James A1 - Hillengass, Jens A1 - Epstein, Joshua A1 - Thanendrarajan, Sharmilan A1 - Schinke, Carolina A1 - van Rhee, Frits A1 - Zangari, Maurizio A1 - Barlogie, Bart A1 - Davies, Faith E. A1 - Morgan, Gareth J. A1 - Weinhold, Niels T1 - Lack of Spleen Signal on Diffusion Weighted MRI is associated with High Tumor Burden and Poor Prognosis in Multiple Myeloma: A Link to Extramedullary Hematopoiesis? JF - Theranostics N2 - Due to the low frequency of abnormalities affecting the spleen, this organ is often overlooked during radiological examinations. Here, we report on the unexpected finding, that the spleen signal on diffusion-weighted MRI (DW-MRI) is associated with clinical parameters in patients with plasma cell dyscrasias. Methods: We investigated the spleen signal on DW-MRI together with clinical and molecular parameters in 295 transplant-eligible newly diagnosed Multiple Myeloma (NDMM) patients and in 72 cases with monoclonal gammopathy of undetermined significance (MGUS). Results: Usually, the spleen is the abdominal organ with the highest intensities on DW-MRI. Yet, significant signal loss on DW-MRI images was seen in 71 of 295 (24%) NDMM patients. This phenomenon was associated with the level of bone marrow plasmacytosis (P=1x10(-10)) and International Staging System 3 (P=0.0001) but not with gain(1q), and del(17p) or plasma cell gene signatures. The signal was preserved in 72 individuals with monoclonal gammopathy of undetermined significance and generally re-appeared in MM patients responding to treatment, suggesting that lack of signal reflects increased tumor burden. While absence of spleen signal in MM patients with high risk disease defined a subgroup with very poor outcome, re-appearance of the spleen signal after autologous stem cell transplantation was seen in patients with improved outcome. Our preliminary observation suggests that extramedullary hematopoiesis in the spleen is a factor that modifies the DW-MRI signal of this organ. Conclusions: The DW-MRI spleen signal is a promising marker for tumor load and provides prognostic information in MM. KW - multiple myeloma KW - diffusion weighted mri KW - spleen KW - tumor burden KW - high risk KW - extramedullary hematopoiesis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224982 VL - 9 IS - 16 ER - TY - JOUR A1 - Rasche, Leo A1 - Kortüm, K. Martin A1 - Raab, Marc S. A1 - Weinhold, Niels T1 - The impact of tumor heterogeneity on diagnostics and novel therapeutic strategies in multiple myeloma JF - International Journal of Molecular Sciences N2 - Myeloma is characterized by extensive inter-patient genomic heterogeneity due to multiple different initiating events. A recent multi-region sequencing study demonstrated spatial differences, with progression events, such as TP53 mutations, frequently being restricted to focal lesions. In this review article, we describe the clinical impact of these two types of tumor heterogeneity. Target mutations are often dominant at one site but absent at other sites, which poses a significant challenge to personalized therapy in myeloma. The same holds true for high-risk subclones, which can be locally restricted, and as such not detectable at the iliac crest, which is the usual sampling site. Imaging can improve current risk classifiers and monitoring of residual disease, but does not allow for deciphering the molecular characteristics of tumor clones. In the era of novel immunotherapies, the clinical impact of heterogeneity certainly needs to be re-defined. Yet, preliminary observations indicate an ongoing impact of spatial heterogeneity on the efficacy of monoclonal antibodies. In conclusion, we recommend combining molecular tests with imaging to improve risk prediction and monitoring of residual disease. Overcoming intra-tumor heterogeneity is the prerequisite for curing myeloma. Novel immunotherapies are promising but research addressing their impact on the spatial clonal architecture is highly warranted. KW - multiple myeloma KW - spatial heterogeneity KW - risk stratification KW - minimal residual disease KW - targeted therapy KW - clinical imaging KW - immunotherapy KW - daratumumab Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285402 SN - 1422-0067 VL - 20 IS - 5 ER - TY - JOUR A1 - Loda, Sophia A1 - Krebs, Jonathan A1 - Danhof, Sophia A1 - Schreder, Martin A1 - Solimando, Antonio G. A1 - Strifler, Susanne A1 - Rasche, Leo A1 - Kortüm, Martin A1 - Kerscher, Alexander A1 - Knop, Stefan A1 - Puppe, Frank A1 - Einsele, Hermann A1 - Bittrich, Max T1 - Exploration of artificial intelligence use with ARIES in multiple myeloma research JF - Journal of Clinical Medicine N2 - Background: Natural language processing (NLP) is a powerful tool supporting the generation of Real-World Evidence (RWE). There is no NLP system that enables the extensive querying of parameters specific to multiple myeloma (MM) out of unstructured medical reports. We therefore created a MM-specific ontology to accelerate the information extraction (IE) out of unstructured text. Methods: Our MM ontology consists of extensive MM-specific and hierarchically structured attributes and values. We implemented “A Rule-based Information Extraction System” (ARIES) that uses this ontology. We evaluated ARIES on 200 randomly selected medical reports of patients diagnosed with MM. Results: Our system achieved a high F1-Score of 0.92 on the evaluation dataset with a precision of 0.87 and recall of 0.98. Conclusions: Our rule-based IE system enables the comprehensive querying of medical reports. The IE accelerates the extraction of data and enables clinicians to faster generate RWE on hematological issues. RWE helps clinicians to make decisions in an evidence-based manner. Our tool easily accelerates the integration of research evidence into everyday clinical practice. KW - natural language processing KW - ontology KW - artificial intelligence KW - multiple myeloma KW - real world evidence Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197231 SN - 2077-0383 VL - 8 IS - 7 ER - TY - JOUR A1 - Da Vià, Matteo Claudio A1 - Solimando, Antonio Giovanni A1 - Garitano-Trojaola, Andoni A1 - Barrio, Santiago A1 - Munawar, Umair A1 - Strifler, Susanne A1 - Haertle, Larissa A1 - Rhodes, Nadine A1 - Vogt, Cornelia A1 - Lapa, Constantin A1 - Beilhack, Andreas A1 - Rasche, Leo A1 - Einsele, Hermann A1 - Kortüm, K. Martin T1 - CIC Mutation as a Molecular Mechanism of Acquired Resistance to Combined BRAF‐MEK Inhibition in Extramedullary Multiple Myeloma with Central Nervous System Involvement JF - The Oncologist N2 - Combined MEK‐BRAF inhibition is a well‐established treatment strategy in BRAF‐mutated cancer, most prominently in malignant melanoma with durable responses being achieved through this targeted therapy. However, a subset of patients face primary unresponsiveness despite presence of the activating mutation at position V600E, and others acquire resistance under treatment. Underlying resistance mechanisms are largely unknown, and diagnostic tests to predict tumor response to BRAF‐MEK inhibitor treatment are unavailable. Multiple myeloma represents the second most common hematologic malignancy, and point mutations in BRAF are detectable in about 10% of patients. Targeted inhibition has been successfully applied, with mixed responses observed in a substantial subset of patients mirroring the widespread spatial heterogeneity in this genomically complex disease. Central nervous system (CNS) involvement is an extremely rare, extramedullary form of multiple myeloma that can be diagnosed in less than 1% of patients. It is considered an ultimate high‐risk feature, associated with unfavorable cytogenetics, and, even with intense treatment applied, survival is short, reaching less than 12 months in most cases. Here we not only describe the first patient with an extramedullary CNS relapse responding to targeted dabrafenib and trametinib treatment, we furthermore provide evidence that a point mutation within the capicua transcriptional repressor (CIC) gene mediated the acquired resistance in this patient. KW - Multiple myeloma KW - Extramedullary disease KW - Capicua transcriptional repressor KW - Drug resistance KW - BRAF mutation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219549 VL - 25 IS - 2 ER -