TY - JOUR A1 - Süß, Jasmin A1 - Wehner, Johannes G. A1 - Dostál, Jakub A1 - Engel, Volker A1 - Brixner, Tobias T1 - Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy JF - Journal of Physical Chemistry Letters N2 - We present a theoretical study on exciton–exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dostál et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process. KW - exciton-exciton KW - Exziton KW - Spektroskopie KW - EEA KW - 2Dimensionale Spektroskopie KW - exciton Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178420 UR - https://aip.scitation.org/doi/full/10.1063/1.5086151 N1 - This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in J. Süß et al., J. Chem. Phys. 150, 104304 (2019); https://doi.org/10.1063/1.5086151 and may be found at https://doi.org/10.1063/1.5086151. VL - 150 IS - 10 ER - TY - INPR A1 - Süß, Jasmin A1 - Wehner, Johannes G. A1 - Dostál, Jakub A1 - Engel, Volker A1 - Brixner, Tobias T1 - Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy T2 - Journal of Physical Chemistry Letters N2 - We present a theoretical study on exciton–exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dostál et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process. KW - Exziton KW - Spektroskopie KW - Exciton KW - 2Dimensionale Spektroskopie KW - EEA KW - exciton-exciton Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178482 UR - https://aip.scitation.org/doi/full/10.1063/1.5086151 N1 - This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in J. Süß et al.,J. Chem. Phys. 150, 104304 (2019); https://doi.org/10.1063/1.5086151 and may be found at https://doi.org/10.1063/1.5086151 ER - TY - INPR A1 - Huber, Bernhard A1 - Pres, Sebastian A1 - Wittmann, Emanuel A1 - Dietrich, Lysanne A1 - Lüttig, Julian A1 - Fersch, Daniel A1 - Krauss, Enno A1 - Friedrich, Daniel A1 - Kern, Johannes A1 - Lisinetskii, Victor A1 - Hensen, Matthias A1 - Hecht, Bert A1 - Bratschitsch, Rudolf A1 - Riedle, Eberhard A1 - Brixner, Tobias T1 - Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate N2 - We describe a setup for time-resolved photoemission electron microscopy (TRPEEM) with aberration correction enabling 3 nm spatial resolution and sub-20 fs temporal resolution. The latter is realized by our development of a widely tunable (215–970 nm) noncollinear optical parametric amplifier (NOPA) at 1 MHz repetition rate. We discuss several exemplary applications. Efficient photoemission from plasmonic Au nanoresonators is investigated with phase-coherent pulse pairs from an actively stabilized interferometer. More complex excitation fields are created with a liquid-crystal-based pulse shaper enabling amplitude and phase shaping of NOPA pulses with spectral components from 600 to 800 nm. With this system we demonstrate spectroscopy within a single plasmonic nanoslit resonator by spectral amplitude shaping and investigate the local field dynamics with coherent two-dimensional (2D) spectroscopy at the nanometer length scale (“2D nanoscopy”). We show that the local response varies across a distance as small as 33 nm in our sample. Further, we report two-color pump–probe experiments using two independent NOPA beamlines. We extract local variations of the excited-state dynamics of a monolayered 2D material (WSe2) that we correlate with low-energy electron microscopy (LEEM) and reflectivity (LEER) measurements. Finally, we demonstrate the in-situ sample preparation capabilities for organic thin films and their characterization via spatially resolved electron diffraction and dark-field LEEM. KW - Photoemission electron microscopy PEEM KW - Low energy electron microscopy LEEM KW - Spatially resolved 2D spectroscopy KW - Two-color pump-probe spectroscopy KW - Time-resolved photoemission electron microscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191906 SN - 0034-6748 N1 - This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Review of Scientific Instruments 90, 113103 (2019); https://doi.org/10.1063/1.5115322 and may be found at https://doi.org/10.1063/1.5115322. ER -