TY - JOUR A1 - Zottnick, Sven H. A1 - Sprenger, Jan A. P. A1 - Finze, Maik A1 - Müller‐Buschbaum, Klaus T1 - Statistic Replacement of Lanthanide Ions in Bis‐salicylatoborate Coordination Polymers for the Deliberate Control of the Luminescence Chromaticity JF - ChemistryOpen N2 - Based on the strand‐like coordination polymer (CP) type \(^{1}\)\(_{∞}\)[Ln(BSB)\(_{3}\)(py)\(_{2}\)], [BSB]−=bis‐salicylatoborate anion, mixed Eu/Tb‐containing compounds of the constitution \(^{1}\)\(_{∞}\)[Eu\(_{x}\)Tb\(_{1-x}\)(BSB)\(_{3}\)(py)\(_{2}\)] were synthesised ionothermally for a phase width of (x=0.25–0.75) and characterized regarding structure and optical properties. Previously, known only for other lanthanides, the mixed 1D−Eu/Tb‐CPs show excellent options for statistic replacement of the Ln‐cations during synthesis yielding solid solutions. The products are highly luminescent, with the chromaticity being a direct function of the amount of the respective Ln‐ions. Corresponding to an overall addition of emission intensities, the green Tb\(^{3+}\) emission and the red Eu\(^{3+}\) emission allow for a chromaticity control that also includes yellow emission. Control of the luminescence colour renders them suitable examples of the versatility of statistic replacement of metal ions in coordination chemistry. In addition, crystallization of [EMIm]\(_{2}\)[YCl\(_{5}\)(py)] illuminates possible other products of the ionothermal reactions of [EMIm][BSB] with LnCl\(_{3}\) constituted by components not being part of the main CPs. KW - borates KW - coordination polymers KW - ionic liquids KW - lanthanides KW - luminescence Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239953 VL - 10 IS - 2 SP - 164 EP - 170 ER - TY - JOUR A1 - Matthes, Philipp R. A1 - Schönfeld, Fabian A1 - Zottnick, Sven H. A1 - Müller-Buschbaum, Klaus T1 - Post-synthetic shaping of porosity and crystal structure of Ln-Bipy-MOFs by thermal treatment JF - Molecules N2 - The reaction of anhydrous lanthanide chlorides together with 4,4'-bipyridine yields the MOFs \(^{2}\)\(_{∞}\)[Ln\(_{2}\)Cl\(_{6}\)(bipy)\(_{3}\)]*2bipy, with Ln = Pr-Yb, bipy = 4,4'-bipyridine, and \(^{3}\)\(_{∞}\)[La\(_{2}\)Cl\(_{6}\)(bipy)\(_{5}\)]*4bipy. Post-synthetic thermal treatment in combination with different vacuum conditions was successfully used to shape the porosity of the MOFs. In addition to the MOFs microporosity, a tuneable mesoporosity can be implemented depending on the treatment conditions as a surface morphological modification. Furthermore, thermal treatment without vacuum results in several identifiable crystalline high-temperature phases. Instead of collapse of the frameworks upon heating, further aggregation under release of bipy is observed. \(^{3}\)\(_{∞}\)[LaCl\(_{3}\)(bipy)] and \(^{2}\)\(_{∞}\)[Ln\(_{3}\)Cl\(_{9}\)(bipy)\(_{3}\)], with Ln = La, Pr, Sm, and \(^{1}\)\(_{∞}\)[Ho\(_{2}\)Cl\(_{6}\)(bipy)\(_{2}\)] were identified and characterized, which can also exhibit luminescence. Besides being released upon heating, the linker 4,4'-bipyridine can undergo activation of C-C bonding in ortho-position leading to the in-situ formation of 4,4':2',2 '':4 '',4'''-quaterpyridine (qtpy). qtpy can thereby function as linker itself, as shown for the formation of the network \(^{2}\)\(_{∞}\)[Gd\(_{2}\)Cl\(_{6}\)(qtpy)\(_{2}\)(bipy)\(_{2}\)]*bipy. Altogether, the manuscript elaborates the influence of thermal treatment beyond the usual activation procedures reported for MOFs. KW - energy transfer KW - ligand KW - Ln-MOFs KW - luminescence crystal structure KW - metal-organic frameworks KW - shaping of porosity KW - thermal treatment KW - luminescence KW - crystal scructure KW - coordination polymers KW - solid state Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148404 VL - 20 ER -