TY - JOUR A1 - Jessen, Christina A1 - Kreß, Julia K. C. A1 - Baluapuri, Apoorva A1 - Hufnagel, Anita A1 - Schmitz, Werner A1 - Kneitz, Susanne A1 - Roth, Sabine A1 - Marquardt, André A1 - Appenzeller, Silke A1 - Ade, Casten P. A1 - Glutsch, Valerie A1 - Wobser, Marion A1 - Friedmann-Angeli, José Pedro A1 - Mosteo, Laura A1 - Goding, Colin R. A1 - Schilling, Bastian A1 - Geissinger, Eva A1 - Wolf, Elmar A1 - Meierjohann, Svenja T1 - The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression JF - Oncogene N2 - The transcription factor NRF2 is the major mediator of oxidative stress responses and is closely connected to therapy resistance in tumors harboring activating mutations in the NRF2 pathway. In melanoma, such mutations are rare, and it is unclear to what extent melanomas rely on NRF2. Here we show that NRF2 suppresses the activity of the melanocyte lineage marker MITF in melanoma, thereby reducing the expression of pigmentation markers. Intriguingly, we furthermore identified NRF2 as key regulator of immune-modulating genes, linking oxidative stress with the induction of cyclooxygenase 2 (COX2) in an ATF4-dependent manner. COX2 is critical for the secretion of prostaglandin E2 and was strongly induced by H\(_2\)O\(_2\) or TNFα only in presence of NRF2. Induction of MITF and depletion of COX2 and PGE2 were also observed in NRF2-deleted melanoma cells in vivo. Furthermore, genes corresponding to the innate immune response such as RSAD2 and IFIH1 were strongly elevated in absence of NRF2 and coincided with immune evasion parameters in human melanoma datasets. Even in vitro, NRF2 activation or prostaglandin E2 supplementation blunted the induction of the innate immune response in melanoma cells. Transcriptome analyses from lung adenocarcinomas indicate that the observed link between NRF2 and the innate immune response is not restricted to melanoma. KW - NRF2 KW - melanoma malignancy KW - COX2 expression Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235064 SN - 0950-9232 VL - 39 ER - TY - JOUR A1 - Glutsch, Valerie A1 - Amaral, Teresa A1 - Garbe, Claus A1 - Thoms, Kai-Martin A1 - Mohr, Peter A1 - Hauschild, Axel A1 - Schilling, Bastian T1 - Indirect Comparison of Combined BRAF and MEK Inhibition in Melanoma Patients with Elevated Baseline Lactate Dehydrogenase JF - Acta Dermato-Venereologica N2 - The approval of BRAF and MEK inhibitors has signifi-cantly improved treatment outcomes for patients with BRAF-mutated metastatic melanoma. The 3 first-line targeted therapy trials have provided similar results, and thus the identification of predictive biomarkers may generate a more precise basis for clinical deci-sion-making. Elevated baseline lactate dehydrogenase (LDH) has already been determined as a strong prog-nostic factor. Therefore, this indirect analysis compa-red subgroups with elevated baseline LDH across the pivotal targeted therapy trials co-BRIM, COMBI-v and COLUMBUS part 1. The Bucher method was used to compare progression-free survival, objective response rate and overall survival indirectly. The results show a non-significant risk reduction for progression in the subgroup with elevated baseline LDH receiving vemu-rafenib plus cobimetinib compared with dabrafenib plus trametinib and encorafenib plus binimetinib. Al-though an indirect comparison, these data might pro-vide some guidance for treatment recommendations in melanoma patients with elevated LDH. KW - melanoma KW - BRAF KW - lactate dehydrogenase Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230190 VL - 100 ER -