TY - JOUR A1 - Liu, Zhiqiang A1 - Budiman, Yudha P. A1 - Tian, Ya‐Ming A1 - Friedrich, Alexandra A1 - Huang, Mingming A1 - Westcott, Stephen A. A1 - Radius, Udo A1 - Marder, Todd B. T1 - Copper‐Catalyzed Oxidative Cross‐Coupling of Electron‐Deficient Polyfluorophenylboronate Esters with Terminal Alkynes JF - Chemistry – A European Journal N2 - We report herein a mild procedure for the copper‐catalyzed oxidative cross‐coupling of electron‐deficient polyfluorophenylboronate esters with terminal alkynes. This method displays good functional group tolerance and broad substrate scope, generating cross‐coupled alkynyl(fluoro)arene products in moderate to excellent yields. Thus, it represents a simple alternative to the conventional Sonogashira reaction. KW - boronate esters KW - coupling reactions KW - fluorine KW - fluoroarenes KW - Sonogashira reaction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224362 VL - 26 IS - 71 SP - 17267 EP - 17274 ER - TY - JOUR A1 - Hock, Andreas A1 - Werner, Luis A1 - Riethmann, Melanie A1 - Radius, Udo T1 - Bis‐NHC Aluminium and Gallium Dihydride Cations [(NHC)\(_{2}\)EH\(_{2}\)]\(^{+}\) (E = Al, Ga) JF - European Journal of Inorganic Chemistry N2 - The NHC alane and gallane adducts (NHC)·AlH\(_{2}\)I (NHC = Me\(_{2}\)Im\(^{Me}\) 7, iPr\(_{2}\)Im 8, iPr\(_{2}\)Im\(^{Me}\) 9) and (NHC)·GaH\(_{2}\)I (NHC = Me\(_{2}\)Im\(^{Me}\) 10, iPr\(_{2}\)Im\(^{Me}\) 11, Dipp\(_{2}\)Im 12; R\(_{2}\)Im = 1,3‐di‐organyl‐imidazolin‐2‐ylidene; Dipp = 2,6‐diisopropylphenyl; iPr = isopropyl; Me\(_{2}\)Im\(^{Me}\) = 1,3,4,5‐tetra‐methyl‐imidazolin‐2‐ylidene) were prepared either by the simple yet efficient reaction of the NHC adduct (NHC)·AlH\(_{3}\) with elemental iodine or by the treatment of (NHC)·GaH\(_{3}\) with an excess of methyl iodide at room temperature. The reaction of one equivalent of the group 13 NHC complexes with an additional equivalent of the corresponding NHC afforded cationic aluminium and gallium hydrides [(NHC)\(_{2}\)·AlH\(_{2}\)]\(^{+}\)I− (NHC = Me\(_{2}\)Im\(^{Me}\) 13, iPr\(_{2}\)Im 14, iPr\(_{2}\)Im\(^{Me}\) 15) and [(NHC)\(_{2}\)·GaH\(_{2}\)]\(^{+}\)I− (NHC = Me\(_{2}\)Im\(^{Me}\) 16, iPr\(_{2}\)Im\(^{Me}\) 17) and the normal and abnormal NHC coordinated compound [(Dipp\(_{2}\)Im)·GaH\(_{2}\)(aDipp\(_{2}\)Im)]+I− 18. Compounds 7–18 were isolated and characterized by means of elemental analysis, IR and multinuclear NMR spectroscopy and by X‐ray diffraction of the compounds 7, 9, 10, 15, 16 and 18. KW - aluminium KW - cations KW - Gallium KW - main group elements KW - heterocyclic carbenes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217928 VL - 2020 IS - 42 SP - 4015 EP - 4023 ER - TY - JOUR A1 - Tendera, Lukas A1 - Schaub, Thomas A1 - Krahfuss, Mirjam J. A1 - Kuntze‐Fechner, Maximilian W. A1 - Radius, Udo T1 - Large vs. Small NHC Ligands in Nickel(0) Complexes: The Coordination of Olefins, Ketones and Aldehydes at [Ni(NHC)\(_{2}\)] JF - European Journal of Inorganic Chemistry N2 - Investigations concerning the reactivity of Ni(0) complexes [Ni(NHC)\(_{2}\)] of NHCs (N‐heterocyclic carbene) of different steric demand, Mes\(_{2}\)Im (= 1,3‐dimesitylimidazoline‐2‐ylidene) and iPr\(_{2}\)Im (= 1,3‐diisopropyl‐imidazoline‐2‐ylidene), with olefins, ketones and aldehydes are reported. The reaction of [Ni(Mes\(_{2}\)Im)\(_{2}\)] 1 with ethylene or methyl acrylate afforded the complexes [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)‐C\(_{2}\)H\(_{4}\))] 3 and [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)‐(C,C)‐H\(_{2}\)C=CHCOOMe)] 4, as it was previously reported for [Ni\(_{2}\)(iPr\(_{2}\)Im)\(_{4}\)(µ‐(η\(^{2}\):η\(^{2}\))‐COD)] 2 as a source for [Ni(iPr\(_{2}\)Im)\(_{2}\)]. In contrast to 2, complex 1 does not react with sterically more demanding olefins such as tetramethylethylene, 1,1‐diphenylethylene and cyclohexene. The reaction of [Ni(NHC)\(_{2}\)] with more π‐acidic ketones or aldehydes led to formation of complexes with side‐on η\(^{2}\)‐(C,O)‐coordinating ligands: [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)‐O=CH\(^{t}\)Bu)] 5, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)‐O=CHPh)] 6, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)‐O=CMePh)] 7, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)‐O=CPh\(_{2}\))] 8, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)‐O=C(4‐F‐C\(_{6}\)H\(_{4}\))\(_{2}\))] 9, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)‐O=C(OMe)(CF\(_{3}\)))] 10 and [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)‐O=CHPh)] 11, [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)‐O=CH(CH(CH\(_{3}\))\(_{2}\)))] 12, [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)‐O=CH(4‐NMe\(_{2}\)‐C\(_{6}\)H\(_{4}\)))] 13, [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)‐O=CH(4‐OMe‐C\(_{6}\)H\(_{4}\)))] 14, [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)‐O=CPh\(_{2}\))] 15 and [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)‐O=C(4‐F‐C\(_{6}\)H\(_{4}\))\(_{2}\))] 16. The reaction of 1 and 2 with these simple aldehydes and ketones does not lead to a significantly different outcome, but NHC ligand rotation is hindered for the Mes\(_{2}\)Im complexes 3, 4 and 11–16 according to NMR spectroscopy. The solid‐state structures of 3, 4, 11 and 12 reveal significantly larger C\(_{NHC}\)‐Ni‐C\(_{NHC}\) angles in the Mes\(_{2}\)Im complexes compared to the iPr\(_{2}\)Im complexes. As electron transfer in d\(^{8}\)‐ (or d\(^{10}\)‐) ML\(_{2}\) complexes to π‐acidic ligands depends on the L–M–L bite angle, the different NHCs lead thus to a different degree of electron transfer and activation of the olefin, aldehyde or ketone ligand, i.e., [Ni(iPr\(_{2}\)Im)\(_{2}\)] is the better donor to these π‐acidic ligands. Furthermore, we identified two different side products from the reaction of 1 with benzaldehyde, trans‐[Ni(Mes\(_{2}\)Im)\(_{2}\)H(OOCPh)] 17 and [Ni\(_{2}\)(Mes\(_{2}\)Im)\(_{2}\)(µ\(_{2}\)‐CO)(µ\(_{2}\)‐η\(^{2}\)‐C,O‐PhCOCOPh)] 18, which indicate that radical intermediates and electron transfer processes might be of importance in the reaction of 1 with aldehydes and ketones. KW - Nickel Complexes KW - N‐Heterocyclic Carbenes KW - NHC Complexes KW - Olefin Complexes KW - Aldehyde Complexes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216058 VL - 2020 IS - 33 SP - 3194 EP - 3207 ER - TY - JOUR A1 - Liu, Xiaocui A1 - Ming, Wenbo A1 - Luo, Xiaoling A1 - Friedrich, Alexandra A1 - Maier, Jan A1 - Radius, Udo A1 - Santos, Webster L. A1 - Marder, Todd B. T1 - Regio‐ and Stereoselective Synthesis of 1,1‐Diborylalkenes via Brønsted Base‐Catalyzed Mixed Diboration of Alkynyl Esters and Amides with BpinBdan JF - European Journal of Organic Chemistry N2 - The NaOtBu‐catalyzed mixed 1,1‐diboration of terminal alkynes using the unsymmetrical diboron reagent BpinBdan (pin = pinacolato; dan = 1,8‐diaminonaphthalene) proceeds in a regio‐ and stereoselective fashion affording moderate to high yields of 1,1‐diborylalkenes bearing orthogonal boron protecting groups. It is applicable to gram‐scale synthesis without loss of yield or selectivity. The mixed 1,1‐diborylalkene products can be utilized in Suzuki–Miyaura cross‐coupling reactions which take place selectivly at the C–B site. DFT calculations suggest the NaOtBu‐catalyzed mixed 1,1‐diboration of alkynes occurs through deprotonation of the terminal alkyne, stepwise addition of BpinBdan to the terminal carbon followed by protonation with tBuOH. Experimentally observed selective formation of (Z)‐diborylalkenes is supported by our theoretical studies. KW - boronate esters KW - borylation KW - cross‐coupling KW - synthesis design KW - structure elucidation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214728 VL - 2020 IS - 13 SP - 1941 EP - 1946 ER - TY - JOUR A1 - Horrer, Günther A1 - Krahfuß, Mirjam J. A1 - Lubitz, Katharina A1 - Krummenacher, Ivo A1 - Braunschweig, Holger A1 - Radius, Udo T1 - N-Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Complexes of Titanium(IV) and Titanium(III) JF - European Journal of Inorganic Chemistry N2 - The reaction of one and two equivalents of the N ‐heterocyclic carbene IMes [IMes = 1,3‐bis(2,4,6‐trimethyl‐phenyl)imidazolin‐2‐ylidene] or the cyclic (alkyl)(amino)carbene cAAC\(^{Me}\) [cAAC\(^{Me}\) = 1‐(2,6‐diisopropyl‐phenyl)‐3,3,5,5‐tetra‐methylpyrrolidin‐2‐ylidene] with [TiCl\(_{4}\)] in n ‐hexane results in the formation of mono‐ and bis‐carbene complexes [TiCl\(_{4}\)(IMes)] 1 , [TiCl\(_{4}\)(IMes)2] 2 , [TiCl\(_{4}\)(cAAC\(^{Me}\))] 3 , and [TiCl\(_{4}\)(cAAC\(^{Me}\))\(_{2}\)] 4 , respectively. For comparison, the titanium(IV) NHC complex [TiCl\(_{4}\)(Ii Pr\(^{Me}\))] 5 (Ii Pr\(^{Me}\) = 1,3‐diisopropyl‐4,5‐dimethyl‐imidazolin‐2‐ylidene) has been synthesized and structurally characterized. The reaction of [TiCl\(_{4}\)(IMes)] 1 with PMe\(_{3}\) affords the mixed substituted complex [TiCl\(_{4}\)(IMes)(PMe\(_{3}\))] 6 . The reactions of [TiCl\(_{3}\)(THF)\(_{3}\)] with two equivalents of the carbenes IMes and cAAC\(^{Me}\) in n ‐hexane lead to the clean formation of the titanium(III) complexes [TiCl\(_{3}\)(IMes)\(_{2}\)] 7 and [TiCl\(_{3}\)(cAAC\(^{Me}\))\(_{2}\)] 8 . Compounds 1 –8 have been completely characterized by elemental analysis, IR and multinuclear NMR spectroscopy and for 2 –5 , 7 and 8 by X‐ray diffraction. Magnetometry in solution, EPR and UV/Vis spectroscopy and DFT calculations performed on 7 and 8 are indicative of a predominantly metal‐centered d\(^{1}\)‐radical in both cases. KW - N-heterocyclic carbenes KW - carbene ligands KW - Titanium KW - structure elucidation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208725 VL - 2020 IS - 3 ER -