TY - THES A1 - Liu, Wenlan T1 - Exciton Coupling in Valence and Core Excited Aggregates of pi-Conjugated Molecules T1 - Exzitonen-Kopplung in valenz- und rumpfangeregten Aggregaten pi-konjugierter Moleküle N2 - Im Rahmen dieser Arbeit werden theoretische Modelle zur Beschreibung von Valenz- und Rumpf-angeregten elektronischen Zuständen diskutiert. Im Fall der Valenz-Anregungen wurden time-dependend Hartree-Fock (TD-HF) und timedependent Dichtefunktionaltheorie (TD-DFT)Methoden mit verschiedenen Funktionalen für ein Perylenbisimid (PBI) System validiert. Eine einfache Analyse der Charaktäre der angeregten Zustände wurde vorgeschlagen, die auf den berechneten Übergangsdipolmomenten basiert. Dieser Ansatz ist allerdings auf Zustände beschränkt, die ein signifikantes Übergangsdipolmoment aufweisen. Deshalb wurde eine allgemeinere und fundiertere Methode entwickelt, die auf einer Analyse der berechneten CISWellenfunktion basiert. Darüberhinaus wurde ein literaturbekannter Model-Hamiltonoperator Ansatz von einem lokalisierten Molekülorbitalbild (MO) abgeleitet, das aus der generelleren Analyse-Methode resultiert. Auf diesem Weg ist ein Zugang zu diabatischen angeregten Zuständen und korrespondierenden Kopplungsparametern auf der Basis von ab initio Rechnungen gegeben. Für rumpfangeregte elektronische Zustände wurden drei Methoden für C 1s-angeregte und ionisierte Zustände verschiedener kleiner Moleküle validiert. Darüberhinaus wurde die Basissatzabhängigkeit dieser Zustände untersucht. Anhand der Resultate wurde die frozen core Näherung ausgewählt um rumpfangeregte Zustände von Naphthalintetracarbonsäuredianhydrid (NTCDA) zu berechnen. Um experimentelle Ergebnisse zu erklären, wurde ein Algorithmus entwicklet, der die Exzitonenkopplungsparameter im Fall von nicht-orthogonalen MOs berechnet. N2 - This work focuses on theoretical approaches for predicting the valence and core excited states of aggregate systems. For the valence excitations, TD-HF and TD-DFT with different functionals have been tested at the Perylene bisimide (PBI) system. A simple character analysis method based on the calculated transition dipole moments is proposed. However, this method does not work for excited states without any transition dipole moment. Thus, we proposed a more general and more valid method based on a calculated CIS type wavefunction for the character analysis. Furthermore, a model Hamiltonian method is derived from a localized picture. The energies of the diabatic states and the corresponding coupling parameters were also determined on the basis of ab initio calculations. For the core excitation, three different methods were validated for C 1s-excited and ionized states if several small molecules. Also we tested the basis sets dependence of these core excited states. Based on those results, we chose the frozen core approximation method to evaluate the core excited states of NTCDA molecules. In order to explain the findings in the experiments, we developed an algorithm to evaluate the exciton coupling parameter where non-orthogonal MOs are used. KW - Exziton KW - Dichtefunktionalformalismus KW - Hartree-Fock-Methode KW - Aggregat KW - Angeregter Zustand KW - Quantenchemie KW - Förster-Kopplung KW - zeitabhängige Dichtefunktionaltheorie KW - TD-DFT KW - angeregte Zustände in Aggregaten KW - Quamtum chemistry KW - Förster coupling KW - Exciton KW - time-dependent density functional theory KW - TD-DFT KW - excited states in aggregates Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56169 ER - TY - THES A1 - Pfister, Johannes T1 - On the correlation between the electronic structure and transport properties of [2.2]paracyclophanes and other aromatic systems T1 - Über die Korrelation zwischen der elektronischen Struktur und den Transporteigenschaften von [2.2]Paracyclophan und anderen aromatischen Systemen N2 - Die vorliegende Arbeit präsentiert theoretische Untersuchungen zu Energie- und Ladungs-Transporteigenschaften in organischen Kristallen. Kapitel 4 behandelt Exzitonentransport in Anthracen bei dem der Fall einer schwachen Kopplung zwischen den π-Systemen vorliegt. Die elektronische Kopplung wird mit dem „monomer transition density“ (MTD) Ansatz berechnet. Aus den Kopplungen und Reorganisationsenergien werden mit der Marcus-Theorie Hüpfraten berechnet. Mit Kenntnis der Kristallstrukturen werden daraus in die experimentell zugänglichen Exzitonendiffusionslängen berechnet, deren isotroper Anteil im Rahmen der Streuung der experimentell zugänglichen Daten reproduziert werden. Auch die Anisotropie der Exzitonendiffusionslängen wird qualitativ und quantitativ im Rahmen der zu erwartenden Messgenauigkeit richtig wiedergegeben. Weiterhin enthält Kapitel 4 Untersuchungen zum Elektronen- und Lochtransport in den zwei verschiedenen Modifikationen (α und β) von Perylen. Reorganisationsenergien sowie Diffusionskonstanten wurden für beide beide Kristallstrukturen und Typen des Ladungstransports berechnet. Den besten Transport stellt dabei Lochtransport in β-Perylen dar, jedoch ist dieser stark isotrop. Die bevorzugte Transportrichtung is entlang der b-Achse der Einheitszelle mit elektronischen Kopplungen von größer als 100 meV. Allerdings gibt es hier keinerlei Lochtransport in Richtung der c-Achse. Die Diffusionskonstante in Richtung der b-Achse ist um zwei Größenordnungen größer als die in c-Richtung (62.7•10-6 m2/s vs. 0.4•10-6 m2/s). Der Ladungstransport wird sowohl für Löcher, als auch für Elektronen in beiden Perylenmodifikationen immer stark anisotrop berechnet. Um diese Resultate zu verifizieren wurden experimentelle Elektronenmobilitäten in α-Perylen mit den Simulationen verglichen. Es stellte sich eine sehr gute Übereinstimmung heraus mit Fehlern von nur maximal 27%. Wie oben gezeigt, ist es möglich Transporteigenschaften in zwischen schwach wechselwirkenden Systemen zu berechnen und zu messen. Allerdings ist es hier schwierig, die Güte der zu Grunde liegenden Kopplungsparameter genau anzugeben. Aus diesem Gunde wurde eine Zusammenarbeit über stark wechselwirkede Systeme zwischen uns sowie den Arbeitskreis von Prof. Ingo Fischer begonnen. Dort wurden [2.2]Paracyclophane und dessen Derivate untersucht um zu zeigen, wie Substitution mit Hydroxylgruppen deren Absorptionseigenschaften beeinflusst. Eine Kombination der SCS-MP2 und SCS-CC2-Methoden liefert hierbei insgesamt die besten Ergebnisse um die geometrischen und elektronischen Strukturen für Grund- und angeregte Zustände dieser Modellsysteme sowie deren Stammmolekülen Benzol und Phenol zu beschreiben. Strukturell weist nur [2.2]Paracyclophan im Grundzustand ein Doppelminimumspotenzial bzgl. Verschiebung und Verdrillung der Benzol/Phenol-einheiten untereinander auf. Alle anderen Systeme sind aufgrund ihrer Substitution weniger flexibel. Fast alle untersuchten [2.2]Paracyclophane zeigen nur geringe Strukturänderungen bei der Anregung in den S1 Zustand: Der Abstand zwischen den Ringen wird kürzer, aber qualitativ behalten sie ihre Verdrillung und Verschiebung bei, wenn auch das Ausmaß dieser Verzerrungen reduziert wird. Die Ausnahme hierbei ist p-DHPC, welches von einer verschoben Struktur im Grundzustand in eine verdrillte Struktur im angeregten Zustand übergeht. Dies hat zur Konsequenz, dass die Intensität des 0-0-Übergangs aufgrund der Franck-Condon Faktoren für p-DHPC experimentell nicht mehr beobachtet werden kann und von Verunreinigungen durch o-DHPC überdeckt wird. Die Strukturen der Paracyclophane und deren Änderung durch elektronische Übergänge werden in dieser Arbeit durch elektrostatische Potenziale sowie den antibindenen (bindenden) HOMO (LUMO) Orbitalen erklärt. Adiabatische Anregungsenergien wurden mit Nullpunktsschwingungsenergien korrigiert und liefern Genauigkeiten deren Fehler weniger als 0,1 eV beträgt. Hierbei ist zu beachten, dass eine Korrektur auf B3LYP Niveau die Ergebnisse verschlechtert und man die Berechnung der Schwingungsfrequenzen auf SCS-CC2 durchführen muss um diese Genauigkeit zu erhalten. Aufgrund dieser Rechnungen wurde eine Interpretation der experimentellen [1+1]REMPI Spektren möglich. Bandenprogressionen für die Schwingungen der Verschiebung, der Verdrillung und einer Atmung im [2.2]Paracyclophanskelett wurden identifiziert und zeigen gute Übereinstimmung zum Experiment. Diese Arbeiten zeigen, dass das Substitutionsschema von [2.2]Paracyclophanen eine erhebliche Auswirkung auf die spektroskopischen Eigenschaften haben kann. Da diese Eigenschaften direkt mit den Transporteigenschaften dieser Materialien verbunden ist, kann das hier gewonnene Verständnis der spektroskopischen Eigenschaften genutzt werden, um Materialien mit maßgeschneiderten Transporteigenschaften zu designen. Es konnte gezeigt werden, dass die SCS-CC2-Methode sehr gut geeignet ist, die zu Grunde liegende Wechselwirkung zwischen den π-Systemen vorherzusagen. N2 - The present work presents investigations on energy and charge transport properties in organic crystals. Chapter 4 treats exciton transport in anthracene, which is an example for weakly coupled π-systems. The electronic coupling parameter is evaluated by the monomer transition density approach. With these and the reorganization energy hopping rates are calculated in the framework of the Marcus theory. Together with the knowledge of the crystal structure, these allow us to calculate the experimental accessible exciton diffusion lengths, whose isotropic part fits nicely within the scattering of experimental values found in the literature. Furthermore, the anisotropy of the exciton diffusion lengths is reproduced qualitatively and quantitatively correct. This chapter also contains studies about electron and hole transport in both polymorphs (α and β) of perylene. Reorganization energies as well as diffusion coefficients for both crystal structures and types of charge transport were calculated. The best transport is hole transport in β-perylene, but it is strongly isotropic. The preferred transport direction is along the b-axis of the unit cell with couplings of greater than 100 meV. However, there is no transport along the c-axis. The diffusion constant in b-direction is bigger by two orders of magnitude than in c-direction (62.7•10-6 m2/s vs. 0.4•10-6 m2/s). Charge transport is calculated to be strongly anisotropic for holes as well as electrons in both modifications. To verify these results experimental electron mobilities have been compared to the simulations. Good agreement was found with errors of less than 27%. As it was shown above, the calculation and measurement of transport properties between weakly coupled systems is possible. However, it is difficult to exactly determine the quality of the electronic coupling. For this reason a collaboration about strongly interacting π-systems was started between us and the research group of Prof. Ingo Fischer. There, [2.2]paracyclophanes and its derivates were investigated to show how hydroxyl substitution influences absorption properties. Overall, a combination of SCS-MP2 and SCS-CC2 performs best to address the description of geometric and electronic structures for both ground and excited states of these model systems as well as their parent compounds benzene and phenol. Only [2.2]paracyclophane shows a double minimum potential regarding a twist and shift motion between the benzene/phenol subunits towards each other. All other systems are less flexible due to their substitution pattern. Almost all [2.2]paracyclophanes display minor changes in their geometric structure upon excitation to the S1 state: The inter-ring distance shortens, but qualitatively they keep their shift and twist characteristics, although the extent of these deformations diminishes. The exception is p-DHPC, which turns from a shifted ground state structure into a twisted excited state structure. Consequently, the intensity of the 0-0 transition cannot be observed experimentally due to small Franck-Condon factors and impurities of o-DHPC. In the present thesis, the structures and their changes due to excitation are explained by electrostatic potentials as well as antibonding (bonding) HOMO (LUMO) orbitals. Adiabatic excitation energies have been corrected by ZPEs and result in accuracies with errors smaller than 0.1 eV. Note that corrections on the B3LYP level worsen the results and one has to apply SCS-CC2 to achieve this accuracy. These calculations allow an interpretation of the experimental [1+1]REMPI spectra. Band progressions of the twist, shift and breathing of the [2.2]paracyclophane skeleton vibrations have been identified and show good agreement to the experiment. This work shows that the substitution pattern in [2.2]paracyclophanes can have a significant impact on spectroscopic properties. Because these properties are directly linked to the transport properties of these materials, the hereby gained insight can be used to design materials with customized transport properties. It was shown that the SCS-CC2 method is very appropriate to predict the interaction between the π-systems KW - Ladungstransport KW - Exziton KW - Paracyclophane KW - Exzitonentransport KW - schwach gekoppelte Regime KW - Anthracen KW - Theoretische Chemie KW - REMPI KW - Coupled Cluster KW - MP-Störungstheorie KW - PI-System KW - exciton transport KW - weak coupling regime Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65362 ER -