TY - THES A1 - Muth, Mathias T1 - Synthese und Charakterisierung allosterer Modulatoren muscarinischer M2-Rezeptoren : Strukturvariationen der Bis(ammonium)alkan-Verbindung W84 T1 - Synthesis and characterisation of allosteric modulators of the muscarinic M2-receptor - structural variations of the bis(ammonio)alkane-compound W84 N2 - Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung allosterer Modulatoren muscarinischer Rezeptoren. Allostere Modulatoren binden an einer topographisch anderen Stelle am Rezeptor als klassische orthostere Liganden und sind so in der Lage, die Dissoziation und die Assoziation orthosterer Agonisten und Antagonisten zu beeinflussen. Die fünf Subtypen des Muscarinrezeptors M1-M5 unterscheiden sich vor allem in der Aminosäuresequenz der in den äußeren Bereichen des Rezeptorproteins vorhandenen Loops, während sie im Bereich des Rezeptorkanals, wo die orthostere Bindungsstelle lokalisiert ist, eine hohe Sequenzhomologie aufweisen. Die gemeinsame Bindungsstelle allosterer Modulatoren des M2-Rezeptors befindet sich im weniger konservierten extrazellulären Bereich. Somit sind allostere Modulatoren in der Lage, spezifisch an einen der Rezeptorsubtypen zu binden. Als Leitstruktur zum Entwurf der im Rahmen dieser Arbeit synthetisierten Verbindungen diente die Bis(ammonium)alkanverbindung W84. Über Weg A wurden Phthalsäure- bzw. Naphthalsäureanhydridderivate in einer Kondensationsreaktion mit dem entsprechenden N,N-Dimethylpropan-1,3-diaminderivat zum jeweiligen Phthalimidopropylaminderivat umgesetzt. Durch die Reaktion von zwei Äquivalenten des Amins mit einem Äquivalent 1,6-Dibromhexan wurden dann die symmetrischen W84-Derivate erhalten. Um die unsymmetrischen W84-Derivate zu erhalten, musste zunächst das jeweilige Phthalimidopropylamin einseitig durch 1,6-Dibromhexan alkyliert werden. Im letzten Schritt wurden äquimolare Mengen der alkylierten Verbindung und eines Phthalimidopropylamins umgesetzt. Da sich im Laufe der Arbeit die Methylierung an Position 2 der Propylketten als kritische Position zur Beeinflussung der Gleichgewichtsbindung herausstellte, wurden Verbindungen hergestellt, die an den Propylketten Alkylgruppen verschiedener Länge tragen. Aus diesem Grund wurde Syntheseweg B entwickelt. Zunächst wurden in mehreren Stufen, ausgehend von Malonsäurediethylester, einfach und zweifach mit Alkylgruppen substituierte 1,3-Dibrompropanderivate hergestellt. Diese wurden dann mit Kaliumphthalimid zu den jeweiligen 3-Brompropylphthalimidderivaten umgesetzt. Zwei Äquivalente dieser 3-Brompropylphthalimide reagierten mit einem Äquivalent N,N,N’,N’-Tetramethyl-1,6-hexandiamin zu den entsprechenden symmetrischen W84-Derivaten. Ein weiteres Ziel der Arbeit bestand darin, stark fluoreszierende W84-Derivate herzustellen. Die fluoreszierenden Eigenschaften N-substituierter Naphthalimide könnten zur direkten Charakterisierung allosterer Interaktionen oder zur Verfolgung des „Rezeptor-Traffickings“ mittels Fluoreszenzkorrelationsspektroskopie genutzt werden. Deshalb wurden in Position 3 und 4 des Naphthalimidringes des potentesten allosteren Modulators Aminogruppen eingeführt. Hexamethonio-Derivate beeinflussen in nennenswertem Maße bisher nur die Bindung von Antagonisten am M2-Rezeptor. Da die allostere und die orthostere Bindungsstelle räumlich nahe zusammenliegen, wurde der Versuch unternommen, einen orthosteren Agonisten und einen allosteren Modulator in einem Molekül miteinander zu verknüpfen. Es wurden zwölf Hybridmoleküle aus einem Teil des hochaffinen allosteren Modulators 3a und Derivaten des Muscarinagonisten Oxotremorin-M, verbunden durch aliphatische Spacer verschiedener Länge, hergestellt. In pharmakologischen Testungen soll aufgeklärt werden, ob es möglich ist, mit einem Agonist/Alloster-Hybridmolekül gleichzeitig die orthostere und die allostere Bindungsstelle zu besetzen. Die pharmakologische Testung der synthetisierten Verbindungen erfolgte durch Radioligandbindungsstudien. Der allostere Effekt der Testsubstanzen wurde indirekt über die Verzögerung der Dissoziation des radioaktiv markierten orthosteren Antagonisten [3H]N-Methylscopolamin bestimmt. Alle bisquartären Testverbindungen weisen deutlich höhere Affinitätswerte als die Leitstruktur W84 auf. Die 1,8-Naphthalimid-substituierten Verbindungen mit gleichzeitiger zweifacher Methylierung erwiesen sich als hochaffin und zugleich positiv kooperativ. Die wirksamste Verbindung dieser Serie ist Verbindung 3a (Naphmethonium), deren Affinität zum NMS-besetzten Rezeptor im einstelligen nanomolaren Bereich liegt (pEC50 = 8.36). Somit stellt Naphmethonium den potentesten in der Literatur bekannten allosteren Modulator des M2 Rezeptors dar. Mittels QSAR-Analysen wurden die ermittelten Affinitäten zum freien und zum NMS-besetzten Rezeptor in Zusammenhang mit verschiedenen physikochemischen Parametern gebracht. Die Affinität zum NMS-besetzten Rezeptor der Verbindungen der Serie 2 lässt sich mit hoher Güte durch das Volumen eines lateralen N-Methylimids in Kombination mit der benachbarten Dimethylierung der Propylkette beschreiben. Somit wird deutlich, dass zur Erzielung von positiver Kooperativität die Kombination aus einem hochaffinen aromatischen Imid in direkter Nachbarschaft zu einer 2,2-Alkylpropylkette essentiell ist. N2 - The present work deals with the synthesis and characterization of allosteric modulators of muscarinic receptors. Allosteric modulators bind to a topographically different site than classical orthosteric ligands and, thus, are capable of influencing both the dissociation and the association of orthosteric agonists and antagonists. Allosteric modulators are capable of binding selectively to specific subtypes. The bis(ammonio)alkane-type compound W84 served as a lead for the compounds synthesized in this work. Via pathway A, phthalic- and naphthalic anhydride derivatives were converted with N,N-dimethylpropane-1,3-diamines to the phthalimidopropylamine derivatives. The symmetrical W84-derivatives were obtained by the conversion of two equivalents of the amine with one equivalent 1,6 dibromohexane. To obtain the non-symmetrical W84-derivatives the phthalimidopropylamines were unilaterally alkylated by 1,6-dibromohexane. In the last step equimolar amounts of the monoalkylated compound and a phthalimidopropylamine were connected. During our studies the methylation of position 2 of the propylene chains was identified as critical position for the influence on equilibrium binding. Therefore, compounds with varying alkyl substituents were synthesized. First, starting from malonic diethyl ester, 1,3-dibromo-propane derivatives carrying one or two ethyl-, propyl- or iso-butyl groups, respectively, were synthesized first. The latter were converted to the corresponding 3-bromopropylphthalimid derivatives with potassium phthalimide. In the last step two equivalents of the bromopropyl-phthalimides reacted with one equivalent tetramethyl-1,6-hexane-diamine to the symmetrical hexamethonio-derivatives. A further aim of the work was to synthesize highly fluorescent W84-derivatives. The fluorescent properties of N-substituted naphthalimides could be utilized for the direct characterization of allosteric interactions. Therefore, amino groups were introduced in positions 3 and 4 of the naphthalimide moiety. Until now, only the binding of antagonists of the M2 receptor was influenced by hexamethonio derivatives. Because of the spatial proximity of the orthosteric to the allosteric binding site it was tried to combine an agonist and an allosteric modulator in one molecule. Twelve hybride molecules consisting of a part of a highly affin allosteric modulator and of derivatives of the muscarinic agonist oxotremorine-M were synthesized. In the pharmacological evaluation it will be elucidated if it is possible for an agonist/alloster-hybride molecule to bind simultaneously to the orthosteric and the allosteric site. The pharmacological testing of the compounds was accomplished by radioligand binding studies . The allosteric effect of the compounds was determined by measurement of the inhibition of the dissociation of the radioactive marked orthosteric antagonist [3H]N-methylscopolamine. All compounds revealed higher affinitiy values than the lead structure W84. The most potent compound of that series is compound 3a (naphmethonium) that reveals an affinity to the NMS-occupied receptor in the low nanomolar range (pEC50 = 8.36). Taking all results together, the highest affinity values in combination with positive cooperativity were obtained for W84-derivatives carrying at least one naphthalimide moiety directly connected to a 2,2-dimethylpropyl chain. By the introduction of different alkyl groups in the propylene chains it was possible to verify the critical position with respect to the cooperative behaviour of W84-derivatives. QSAR-studies were performed in order to check whether the pharmacologically determined affinities to the free and to the NMS-occupied receptor can be explained by physicochemical properties of the compounds. The affinity to the NMS-occupied receptor of the compounds of series 2 can be described using the volume of one lateral N-methylimide in combination with the dimethylation of the neighbored propylene chain. Summarizing these results it can be concluded that the compounds feature a dominant side with regard to allosteric potency. To achieve positive cooperativity the combination of an affinity generating lateral aromatic imide moiety connected to a 2,2-alkylated propylene chain is essential. KW - Muscarinrezeptor KW - allosterischer Effektor KW - W84 KW - Analoga KW - Chemische Synthese KW - GPCR KW - allostere Modulation KW - Muscarinrezeptor KW - GPCR KW - allosteric modulation KW - muscarinic receptor Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8839 ER - TY - THES A1 - Teichgräber, Jürgen T1 - Aminosubstituierte Terphenyle als neue Leitstruktur für allostere Modulatoren muscarinischer M2-Acetylcholinrezeptoren T1 - Aminosubstituted terphenyls as new leadstructures for allosteric modulators of the muscarinic M2-acetylcholine receptors N2 - Die muscarinischen Rezeptoren sind ein wichtiger Bestandteil des parasympathischen Nervensystems. Sie gehören zur großen Gruppe der G-Protein-gekoppelten Rezeptoren, die nach ihrer Verwandtschaft in drei große Klassen eingeteilt werden können. Die muscarinischen Rezeptoren gehören zur Klasse A, den rhodopsinähnlichen Rezeptoren. Durch die im Jahr 2000 vorgenommene Aufklärung der hochauflösenden Röntgenkristallstruktur des Rinderrhodpsins und die hohe Aminosäuresequenzähnlichkeit der G-Protein-gekoppelten Rezeptoren hat man eine sehr gute Modellvorstellung über den Aufbau der G-Protein-gekoppelten Rezeptoren. Die Rezeptoren bestehen aus sieben transmembranalen Helices, die von drei intrazellulären und drei extrazellulären Loops stabilisiert werden. Bis heute konnten fünf Rezeptorsubtypen gentechnisch klassifiziert werden, die sich durch ihre Gewebeverteilung und Funktion unterscheiden. Allen Subtypen ist eine hohe Sequenzhomologie im Bereich der orthosteren Bindungsstelle gemeinsam, so dass die Entwicklung von subtyp-spezifischen orthosteren Liganden sehr schwierig ist. Außer der orthosteren Bindungsstelle konnte noch eine weitere Bindungsstelle am muscarinischen Rezeptor identifiziert werden. Diese befindet sich weiter außerhalb im Rezeptor in einem Bereich, der über die fünf Rezeptorsubtypen nicht sehr stark konserviert ist, so dass die Entwicklung von subtyp-spezifischen Liganden möglich ist. An dieser zweiten Bindungsstelle binden allostere Modulatoren. Hierbei handelt es sich um Substanzen, die ohne den orthosteren Liganden keinen Effekt am Rezeptor auslösen, dafür aber die Gleichgewichtsbindung des orthosteren Liganden beeinflussen können. Der Einfluss auf die Gleichgewichtsbindung geschieht wechselseitig und kann positiv, neutral oder negativ kooperativ sein. Zusätzlich üben allostere Modulatoren einen Effekt auf die Dissoziation des orthosteren Liganden aus. Die meisten bisher gefunden allosteren Modulatoren erniedrigen die Dissoziationsgeschwindikeit des orthosteren Liganden vom Rezeptor. Die Summe dieser Eigenschaften machen die allosteren Modulatoren sehr interessant für die Arzneimitteltherapie. Das Ziel dieser Arbeit war die Synthese strukturell neuer allosterer Modulatoren des muscarinischen Rezeptors unter Anwendung des postulierten Pharmakophormodells. Als Ausgangspunkt sollten geländerhelicale Moleküle dienen, die strukturell abgewandelt dieses Pharmakophormodell sehr gut erfüllen. Die geländerhelicalen Moleküle ähneln in ihrem dreidimensionalen Aufbau dem Geländer einer Wendeltreppe. Sie sind durch die Brücken zwischen den aromatischen Bereichen sehr rigide Moleküle, so dass es nur wenige genau definierte Konformationen gibt. Grundsätzlich können drei Atropisomere unterschieden werden, wobei zwei zueinander enantiomer sind. Geplant war die Synthese eine Reihe von tertiären Aminen oder quartären Ammoniumsalzen. Die Synthese der Ausgangsverbindung konnte nach der Vorschrift von Kiupel erfolgen, war aber nur mit geringer Ausbeute möglich. Deshalb wurde dieser Syntheseweg nicht weiterverfolgt. Als Alternative bot sich an, auf die Brücken zwischen den aromatischen Ringen zu verzichten. Die so entstandenen Verbindungen sind weniger rigide und können sich deshalb gegebenenfalls besser an den Rezeptor anpassen. Grundsätzlich können je nach Substitutionsmuster zwei Synthesewege verfolgt werden. Beide Varianten erfüllen das postulierte Pharmakophormodell. Der Aufbau des Grundgerüstes erfolgt mittels einer nickelkatalysierten Grignard-Kupplung. Danach erfolgen eine Wohl-Ziegler-Seitenkettenbromierung und eine Verlängerung der Seitenkette im Sinne einer Alkylierung mittels Malonsäurediethylester und einer Hilfsbase. Anschließend erfolgen die Decarboxylierung und die Umsetzung zum Amid, das zum Amin reduziert werden kann. Betrachtet man die Lage der Pharmakophorelemente so variiert der Abstand der positiv geladenen Stickstoffe je nach Konformation zwischen 5 Å und 15 Å, so dass ein weiter Bereich abgedeckt werden kann. Der Abstand der aromatischen Bereiche bleibt relativ stabil. Die pharmakologische Testung der Verbindungen auf ihre allostere Potenz und Affinität zum muscarinischen Rezeptor erfolgte in der Arbeitsgruppe von Prof. Mohr in Bonn. Hierzu werden Membranhomogenate vom Herzventrikelgewebe des Hausschweines verwendet. Diese enthalten mit großer Prävalenz muscarinische M2-Rezeptoren. Es wurden Gleichgewichtsbindungs- und Dissoziationsexperimente durchgeführt. Bis jetzt sind noch nicht alle Verbindungen getestet worden. Die bisher getesteten Verbindungen weisen alle eine Affinität zum mit [3H]-N-Methylscopolamin besetzten muscarinischen M2-Rezeptor im mikro-molaren Bereich auf. Sie liegen damit im oberen Bereich der bisher synthetisierten allosteren Modulatoren. Das postulierte Pharmakophormodell konnte also mit Hilfe der synthetisierten Substanzen bestätigt werden. N2 - The muscarinic receptors are an important part of the parasympathic nervous system. They belong to the group of G protein-coupled receptors. Up to now about 1000 members of this group have been identified and were classified into three families. The muscarinic receptors belong to family A, the rhodopsine-like receptors, which is also the biggest family. Due to the high resolution X-ray crystallography analysis of bovine rhodopsine and the high similarity of the protein sequences of the G protein-coupled receptors, there is a good model describing the structure of the G protein-coupled receptors. The receptor consists of seven transmembranale helices which are stabilised by three extra- and three intracellular loops. Up to now five receptor subtypes are genetically classified which differ in tissue partitioning and function. All subtypes possess a high sequence similarity within the area of the orthosteric binding site. Therefore the development of subtypspecific orthosteric ligands is very difficult. Apart from the orthosteric site a second binding site at the muscarinic receptor could be identified located outside the receptor at a position which is not highly conserved over the five receptor subtypes. Due to this fact the development of subtypspecific ligands could be possible. At this second site allosteric modulators are able to bind. Allosteric modulators are substances which have no effect on the receptor without the binding of the orthosteric ligand, but affect the equilibrium binding of the orthosteric ligand. Influence on the equilibrium binding occurs mutual and is positively, neutral or negatively cooperative. Additionally allosteric modulators have an effect on the dissociation of the orthosteric ligand. Most of the known allosteric modulators reduce the dissociation rate of the orthosteric ligand from the receptor. These properties make allosteric modulators very interesting for medication. Their use could make a smooth and selective modulation of the orthosteric ligand´s effect on one special subtype within a wide therapeutic range possible. A positive cooperative allosteric modulator of the M2-receptor could enhance selectively the affinity of an orthosteric ligand to the receptor. The aim of this dissertation was the synthesis of structurally new allosteric modulators of the muscarinic receptor using the postulated pharmacophore model. Structurally modified “geländerhelicale” molecules served as starting point because they fit perfectly in the postulated pharmacophore model. The 3D structure of a “geländerhelical” molecule is similar to the banisters of a spiral staircase. Due to the bridges between the aromatic rings these molecules are very rigid so that there is a limited set of conformations. In principle three atropisomers can be distinguished, two of them are enantiomers. The synthesis of some tertiary amines or quartäry ammonia salts was intended. The first steps of the synthesis followed Kiupel´s synthesis scheme. Since the last-mentioned ring closure could only be performed with poor yields and a couple of reactions had to follow to obtain the pure product, the strategy was slightly changed. As an alternative the bridges between the aromatic rings were omitted. The compounds are less rigid and have the ability to adopt the receptor’s shape. Two synthesis strategies are possible. Both variations fulfil the postulated pharmacophore model. In case of pathway A the stereochemistry does not change. It could be distinguished between three atropisomers, two of them are enantiomers. In case of pathway B two atropisomers could be distinguished which are diastereomers. Due to higher yields pathway B was preferred. The skeleton was built up by means of a nickel catalysed Grignard coupling. After that the two side chains were brominated by a Wohl-Ziegler-bromination and alkylated by the use of diethyl malonate and a strong base. Afterwards the esters were decarboxylated and converted to the amide which could be reduced to the amine. Looking at the pharmacophoric elements the distance between the positive nitrogens varies due to the conformation between 5 Å and 15 Å, therefore a wide range is covered. The distance between the aromatic ring systems is nearly constant. The pharmacological testing of the compounds due to there allosterical potency and affinity to the muscarinic receptor were performed by the group of Prof. Mohr at Bonn using membrane suspensions of the guinea pig’s heart ventricle tissue. They contain muscarinic M2-receptors with high prevalence. Equilibrium binding and dissociation assays were performed. Up to now not all compounds are tested. The tested compounds show affinity to the [3H]NMS occupied muscarinic M2-receptor in a micro-molar range. The affinity falls into an upper range of the already synthesised compounds. All in all the postulated pharmacophore model could be confirmed by the synthesised compounds. KW - Muscarinrezeptor KW - Allosterischer Effektor KW - Terphenylderivate KW - Allosterer Modulator KW - Muscarinischer Rezeptor KW - Terphenyl Derivate KW - allosteric modulation KW - muscarinic receptors KW - terphenyl derivatives Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8571 ER -