TY - THES A1 - Moigno, Damien T1 - Study of the ligand effects on the metal-ligand bond in some new organometallic complexes using FT-Raman and -IR spectroscopy, isotopic substitution and density functional theory techniques T1 - Untersuchung der Wirkung von Liganden auf die Metall-Ligand Bindungen einiger neuer organometallischer Komplexe mit Hilfe der FT-Raman und -IR Spektroskopie, isotopischen Substitution und DFT Techniken N2 - The present studies which have been performed in the work-group C-2 (Prof. W. Kiefer) within the program of the Sonderforschungsbereichs 347, deal with the FT-Raman and –IR spectroscopy on new organometallic complexes, synthesized in the work-groups B-2 (Prof. W. Malisch), B-3 (Prof. W. A. Schenk), D-1 (Prof. H. Werner) and D-4 (Prof. D. Stalke). The FT-Raman spectra recorded at 1064 nm led to very useful and interesting information. Furthermore, the DFT calculations which are known to offer promise of obtaining accurate vibrational wavenumbers, were successfully used for the assignment of the vibrational spectra. For the first time it has been possible to ascribe exactly the n(RhC) stretching mode in the vinylidene rhodium(I) complex trans-[RhF(=C=CH2)(PiPr3)2] by using isotopic substitution, in conjunction with theoretical calculations. This is also true for the complexes trans-[RhF(CO)(PiPr3)2], trans-[RhF(C2H4)(PiPr3)2], trans-[RhX(=C=CHPh)(PiPr3)2] (X = F, Cl, Br, I, Me, PhCºC) and trans-[RhX(CN-2,6-xylyl)(PiPr3)2] (X = F, Cl, Br, I, CºCPh). In addition, the comparison between the n(RhC) wavenumbers of the complexes trans-[RhF(=13C=13CH2)(PiPr3)2] and trans-[RhF(CO)(PiPr3)2], containing the isoelectronic ligands 13C=13CH2 and CO, which have the same reduced mass, indicated that the Rh-C bond is stronger in the carbonyl than in the vinylidene complex. Besides, the n(RhF) stretching mode, which has been observed at higher wavenumbers in the FT-Raman and -IR spectra of trans-[RhF(CO)(PiPr3)2], showed that the carbonyl ligand is a better p-acceptor and a less effective s-donor than the vinylidene one. Moreover, the comparison of the n(CºC) and n(Rh-C) modes from the FT-Raman spectrum of the complexes trans-[Rh(CºCPh)(L)(PiPr3)2] (L = C=CHPh, CO, CN-2,6-xylyl) point out that the p-acceptor ability of the ligand trans to CºCPh should rise in the order C=CH2 < CO < CN-2,6-xylyl £ C=CHPh. The investigated sensitivity of the n(RhC), n(CC), n(CO) and n(CN) vibrational modes to the electronic modifications occuring in the vinylidene, carbonyl, ethylene and isonitrile complexes, should allow in the future the examination of the p-acceptor or p-donor properties of further ligands. Likewise, we were able to characterize the influence of various X ligands on the RhC bond by using the n(RhC) stretching mode as a probe for the weakening of this. The calculated wavenumbers of the n(RhC) for the vinylidene complexes trans-[RhX(=C=CHR)(PiPr3)2], where R = H or Ph, suggested that the strength of the Rh=C bond increases along the sequence X = CºCPh < CH3 < I < Br < Cl < F. For the series of carbonyl compounds trans-[RhX(CO)(PiPr3)2], where X = F, Cl, Br and I, analogous results have been obtained and confirmed from the model compounds trans-[RhX(CO)(PMe3)2]. Since, the calculated vibrational modes for the ethylene complex trans-[RhF(C2H4)(PiPr3)2] were in good agreement with the experimental results and supported the description of this complex as a metallacyclopropane, we were interested in getting more information upon this class of compounds. In this context, we have recorded the FT-Raman and -IR spectra of the thioaldehyde complexes mer-[W(CO)3(dmpe)(h2-S=CH2)] and mer-[W(CO)3(dmpe)(h2-S=CD2)] which have been synthezised by B-3. The positions of the different WL vibrational modes anticipated by the DFT calculations, were consistent with the experimental results. Indeed, the analysis of the band shifts in the FT-Raman and –IR spectra of the isotopomer mer-[W(CO)3(dmpe)(h2-S=CD2)] confirmed our assignment. The different stereoisomers of complex mer-[W(CO)3(dmpe)(h2-S=CH2)] were investigated too, since RMN and IR-data have shown that complex mer-[W(CO)3(dmpe)(h2-S=CH2)] lead in solution to an equilibrium. Since the information on the vibrational spectra of the molybdenum and tungsten complexes Cp(CO)2M-PR2-X (M = Mo, W; R = Me, tBu, Ph; X = S, Se) is very scarce, we extended our research work to this class of compounds. We have tried to elucidate the bonding properties in these chalcogenoheterocycle complexes by taking advantage of the mass effect on the different metal atoms (W vs. Mo). Thus, the observed band shifts allowed to assign most of the ML fundamental modes of these complexes. This project and the following one were a cooperation within the work-group B-2. The Raman and IR spectra of the matrix isolated photoproducts expected by the UV irradiation of the iron silyl complex Cp(CO)2FeSiH2CH3 have been already reported by Claudia Fickert and Volker Nagel in their PhD-thesis. Since no exact assignment was feasible for these spectra, we were interested in the study of the reaction products created by irradiation of the carbonyl iron silyl complex Cp(CO)2FeCH2SiH3. Although the calculated characteristic vibrational modes of the metal ligand unit for the various photoproducts are significantly different in constitution, they are very similar in wavenumbers, which did not simplify their identification. However, the theoretical results have been found to be consistent with the earlier experimental results. Finally, the last part of this thesis has been devoted to the (2-Py)2E- anions which exhibit a high selectivity toward metal-coordination. All di(2-pyridyl) amides and -phosphides which were synthesized by D-4, coordinate the R2Al+ fragment via both ring nitrogen atoms. This already suggests that the charge density in the anions is coupled into the rings and accumulated at the ring nitrogen atoms, but the Lewis basicity of the central nitrogen atom in Et2Al(2-Py)2N is still high enough to coordinate a second equivalent AlEt3 to form the Lewis acid base adduct Et2Al(2-Py)2NAlEt3. Due to the higher electronegativity of the central nitrogen atom in Me2Al(2-Py)2N, Et2Al(2-Py)2N and Et2Al(2-Py)2NAlEt3, compared to the bridging two coordinated phosphorus atom in Me2Al(2-Py)2P and Et2Al(2-Py)2P, the di(2-pyridyl)amide is the hardest Lewis base. In the phosphides merely all charge density couples into the rings leaving the central phosphorus atom only attractive for soft metals. These results were confirmed by using DFT and MP2 calculations. Moreover, a similar behaviour has been observed and described for the benzothiazolyl complex [Me2Al{Py(Bth)P}], where complementary investigations are to be continued. The DFT calculations carried out on the model compounds analysed in these studies supply very accurate wavenumbers and molecular geometries, these being in excellent agreement with the experimental results obtained from the corresponding isolated complexes. N2 - Die vorliegende Arbeit wurde im Rahmen des Sonderforschungsbereichs 347 „Selektive Reaktionen Metall-aktivierter Moleküle“ im Teilprojekt C-2 (Prof. W. Kiefer) „Laserspektroskopie zur Charakterisierung der Struktur und Dynamik Metall-gebundener Moleküle“ durchgeführt. Diese befaßt sich mit den Infrarot- und Raman-spektroskopischen Untersuchungen an Übergangsmetallverbindungen, die in den Teilprojekten B-2 (Prof. W. Malisch), B-3 (Prof. W. A. Schenk), D-1 (Prof. H. Werner), D-4 (Prof. D. Stalke) synthetisiert wurden. Durch den Einsatz der FT-Raman-Spektroskopie mit langwelliger Laseranregung im NIR-Bereich und zum Teil von isotopenmarkierten Molekülen konnten aussagekräftige Spektren erhalten werden. Die Dichtefunktionnaltheorie stellte sich als geeignetes Mittel zur Vorhersage und Interpretation der Schwingungsspektren heraus. Abhängig von der Größe der betrachteten Komplexe waren jeweils Rechnungen nötig, die auf sehr unterschiedlichen theoretischen Niveaus basierten. Zum ersten Mal wurde mit Hilfe der Isotopenmarkierung und der Dichtefunktionaltheorie die Valenzschwingung n(Rh=C) in trans-[RhF(L)(PiPr3)2] (L = C=CH2, 13C=13CH2) charakterisiert. Diese zeigte sich als eine starke Raman-Bande und konnte ebenfalls im trans-[RhF(CO)(PiPr3)2] identifiziert werden. Darüber hinhaus erkannte man beim Vergleich von trans-[RhF(13C=13CH2)(PiPr3)2] und trans-[RhF(CO)(PiPr3)2] eine Verschiebung nach höheren Wellenzahlen der Valenzschwingung n(RhC) für den Carbonyl-Komplex. Einerseits haben beide Liganden 13C=13CH2 und CO die gleiche reduzierte Masse, was die elektronische Natur der n(RhC)-Verschiebung zeigt, welche eine Verstärkung der RhC-Valenzkraftkonstanten im Fall des Carbonyls belegt. Anderseits weist die Verschiebung der n(RhF)-Streckschwingung nach höheren Wellenzahlen im Carbonyl-Komplex für deren Ligand bessere p-Akzeptor- und schlechtere s-Donor-Eigenschaften gegenüber dem Vinyliden auf. Durch die aus solchen Untersuchungen gewonnenen n(RhC)- und n(CºC)-Verschiebungen in den verschiedenen untersuchten Komplexen ergibt sich die folgende Reihe abnehmender p-Akzeptorstärke: C=CHPh ³ CN-2,6-xylyl > CO > C=CH2. Die Empfindlichkeit der Valenzschwingungen n(RhC), n(CC), n(CO) und n(CN) gegenüber Veränderungen der elektronischen Verhältnisse in Vinylidene-, Carbonyl-, Ethylene- und Isonitrile-Komplexen läßt sich ihrerseits als „Sonde“ zur Untersuchung der p-Akzeptor-bzw. p-Donor-Eigenschaften anderer Liganden nutzen. Die Beeinflussung, vor allem die Schwächung der RhC-Bindung durch einen trans-ständigen Liganden konnte dadurch an den Komplexen trans-[RhX(13C=13CH2)(PiPr3)2] (X = F, Cl, Br, I), trans-[RhX(C=CHPh)(PiPr3)2] (X = F, Cl, Br, I, Me, PhCºC), trans-[RhX(CO)(PiPr3)2] (X = F, Cl, Br, I, PhCºC) und trans-[RhX(CN-2,6-xylyl)(PiPr3)2] (X = F, Cl, Br, I, PhCºC) untersucht werden. Die FT-Raman Spektroskopie zeigte sich als eine nützliche Methode zur Untersuchung des Trans-Einflusses. MO- und NBO-Berechnungen waren dabei sehr hilfreich, um diesen Effekt zu charakterisieren. Eine weitere Substanzklasse der hier untersuchten Übergangsmetallverbindungen stellen die verschiedenen Molybden- und Wolframkomplexe dar, die in den Teilprojekten B-3 und B-2 synthetisiert wurden. In diesem Zusammenhang wurden die FT-Raman- und –IR-Spektren von den polykristallinen Thioaldehyd-Komplexen mer-[W(CO)3(dmpe)(h2-S=CR2)] (R = H, D) aufgenommen und mit Dichtefunktionalrechnungen verglichen. Die Isotopenmarkierung lieferte eine klare Zuordnung der n(WC) und n(CS) Valenzstreckschwingungen, welche den partialen CS-Doppelbindungscharakter in diesen Verbindungen zeigte. Zudem konnte eine vollständige Analyse dieser Komplexe mit Hilfe der DFT-Rechnungen erlangt werden. NMR- und IR-Daten zeigten, daß bei einer Lösung von mer-[W(CO)3(dmpe)(h2-S=CH2)] ein Gleichgewicht stattfindet. Infolgedessen wurden die Energien der unterschiedlichen Stereo-Isomere von mer-[W(CO)3(dmpe)(h2-S=CH2)] untersucht, welche in sehr guter Übereinstimmung mit dem experimentellen Befund standen. Die Umsetzung der Phosphenium-Komplexe Cp(CO)2M=PR2 (M = W, Mo; R = tBu, Ph) mit Schwefel oder Selen lieferte entsprechende stabile [2+1]-Cycloaddukte in guten bis sehr guten Ausbeuten. FT-Ramanspektren von solchen Verbindungen wurden auf der Basis von Dichtefunktionalrechnungen aufgenommen und diskutiert. Diese Untersuchungen fanden in Zusammenarbeit mit Teilprojekt B-2 statt und hatten die Aufklärung der Bindungseigenschaften des Dreirings in diesen Komplexen zum Ziel. Die wichtigsten n(M-L) Valenzschwingungen konnten ebenso charakterisiert werden. Bei der UV-Bestrahlung von Cp(CO)2FeSiH2Me und Cp(CO)2FeCH2SiH3 sind verschiedene Photoprodukte bzw. Intermediate zu erwarten. In den Dissertationen von Claudia Fickert und Volker Nagel sind Veränderungen an den Raman- bzw. IR-Spektren der UV-Bestrahlungexperimente der matrixisolierten Substanzen vorgestellt und diskutiert worden. Dabei wurde die a-H-Umlagerung nach photochemischer Decarbonylierung als stabilstes Intermediat postuliert. Jedoch konnten keine eindeutigen Aussagen getroffen werden. Aufgrund dessen wurde die theoretische photochemisch induzierte Decarbonylierung und anschließenden Umlagerungen von Cp(CO)2FeSiH2Me und Cp(CO)2FeCH2SiH3 mit Hilfe der Dichtefunktionaltheorie behandelt und in einem Kapitel der vorliegenden Dissertation dargestellt. Im letzten Teil dieser Arbeit wurden Raman-Spektren und quantenchemische Rechnungen an Di(2-Pyridyl)systemen durchgeführt, die im Teilprojekt D-4 synthetisiert wurden. Die Py2E--Anionen weisen eine außergewöhnliche Selektivität bezüglich der Metallkoordination auf. Um geeignete Vorläufermoleküle zur Darstellung dünner III/V-Schichten mittels MOCVD-Experimente darzustellen, wurde Py2NH und Py2PH mit Et3Al bzw. Me3Al umgesetzt. Ein deutlicher Unterschied zwischen Amid und Phosphid ist in der Reaktivität gegenüber einem weiteren Lewis-säuren Äquivalent Et3Al bzw. Me3Al zu erkennen. Das bivalente amidische Stickstoffatom ist im Gegensatz zum Phosphoratom zu einer weiteren Koordination befähigt, was mittels DFT- und MP2-Rechnungen belegt wurde. Der Py(Bth)P--Ligand in [Me2Al{Py(Bth)P}] kann als doppelter Hart/Weich-Chelatligand bezeichnet werden. Das Me2Al+-Fragment koordiniert über die „harte Seite“ des Liganden (den Pyridylstickstoffatomen), während die „weiche Seite“ als P-S-Chelatligand weiterhin in der Lage sein sollte, weiche Übergangsmetallkomplexfragmente [M] zu stabilisieren. Diese Verbindung wurde zum Teil mit den obengenannten Methoden charakterisiert und sollte in weiter untersucht werden. Die durchgeführten DFT-Rechnungen lieferten nicht nur eine Möglichkeit der Interpretation von Schwingungsspektren, sondern erlaubten auch den Vergleich berechneter Molekülgeometrien mit Daten von Kristallstrukturanalysen und lieferten wichtige Antworten zu verschiedenen Problemstellungen. KW - Übergangsmetallkomplexe KW - Ligand KW - Fourier-Spektroskopie KW - Isotopieeffekt KW - Dichtefunktionalformalismus KW - FT-Raman KW - Infrarot KW - Spektroskopie KW - DFT KW - Vinyliden- KW - Ethylen- KW - Isonitril- KW - Carbonyl- KW - Thioaldehyd- KW - Silyl-Komplexen KW - Rhodium KW - Wolfram KW - Eisen KW - FT-Raman KW - infrared KW - spectroscopy KW - DFT calculations KW - vinylidene complexes KW - carbonyl complexes KW - ethylene complexes KW - isonitrile complexes Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3101 ER - TY - THES A1 - Fischer, Kathrin Helena T1 - Analyse der chemischen Reaktionen ungesättigter Verbindungen mit FEL- und Synchrotronstrahlung T1 - Analysis of chemical reactions of unsaturated compounds with FEL and synchrotron radiation N2 - Brilliante Strahlungsquellen werden heute vielfach in der Forschung eingesetzt um Kristallstrukturen, Oberflächeneigenschaften oder Reaktionen zu untersuchen. Als Strahlungsquellen werden dafür bevorzugt Freie Elektronenlaser (FEL) oder Synchrotrons eingesetzt, da sie über weite Bereiche durchstimmbar sind und einen hohen Photonenfluss bereitstellen. Im Rahmen der vorliegenden Dissertation werden beide Lichtquellen verwendet um einerseits Isomere von Kohlenwasserstoffradikalen zu identifizieren und andererseits das Verhalten von Borylen und ungesättigten Verbindungen bei Photoionisation zu dokumentieren. Als erstes Experiment am FEL wurde ein IR-Spektrum von gasförmigen Allylradikalen aufgenommen. Das Allyl war ein Testlauf, da es als Kohlenwasserstoffradikal mit einer kleinen Dipolmomentänderung ein gutes Beispiel für ähnliche Verbindungen ist. Trotz der kleinen Änderung des Dipolmoments und der geringen Teilchendichte der Radikale in der Gasphase konnte ein gutes IR-Spektrum mit der IR-UV-Doppelresonanzmethode aufgenommen werden und die beobachteten Banden mit der Literatur zugeordnet werden. Das 3-Trifluoromethyl-3-Phenyl-carben (TFPC) wurde pyrolytisch aus 3-Trifluoromethyl-3-Phenyl-diazirin erzeugt. Dabei kam es beim Großteil der Carbene zu einer Umlagerung zu Trifluorstyrol. Neben dem Hauptprodukt Trifluorstyrol wurde das Triplett TFPC als Nebenprodukt identifiziert. Zusätzlich wurden die Isomerisierungsbarrieren für den Triplett- und Singulett-Übergangszustand berechnet. Die Radikale 1-Phenylpropargyl und 3-Phenylpropargyl sind anhand ihrer IR-Spektren unterscheidbar und lagern sich nicht ineinander oder in Indenyl um. Ausgehend von beiden Radikalen bilden sich die identischen Dimerisierungsprodukte im Massenkanal m/z = 230 (p-Terphenyl) und 228 (1-Phenylethinylnaphthalin (1PEN)). Außergewöhnlich war die Exklusivität dieser Produkte. Somit müssen deren Reaktionsmechanismen kinetisch viel schneller sein. Die Massen m/z = 230 und 228 waren bereits aus einer massenspektrometrischen Studie ausgehend von Benzol und Ethin bekannt, in der ihre Struktur jedoch nicht geklärt wurde. Somit müssen die gefundenen Dimerisierungsprodukte p-Terphenyl und 1PEN wichtige Intermediate bei der Entstehung von polyzyklischen aromatischen Kohlenwasserstoffen (PAK) und Ruß sein. Von gasförmigen NTCDA wurde mittels der TPEPICO-Methode am Synchrotron Schwellenphotoelektronenspektren aufgenommen. Dabei konnte die adiabatische Ionisierungsenergie (IE(ad)) zu 9.66 eV bestimmt werden. Weiterhin wurden noch fünf angeregte Zustände beobachtet, die mittels quantenmechanischer Berechnungen zugeordnet wurden. Es wurde die Photoionisation des Cycloheptatrienradikals (Tropyl) untersucht. Dabei wurde die erste Bande bei 6.23 eV der IE(ad) zugeordnet. Mit einer Franck-Condon Simulation wurden die beiden Schwingungsprogressionen einer CC-Streckschwingung (ν16+) und einer Kombination aus einer Ringatmung (ν2+) und ν16+ zugeordnet. Der erste Triplett- und Singulettzustand des angeregten Tropylkations konnte in Übereinstimmung mit der Literatur zugeordnet werden. Eine Schulter bei 9.85 eV und die intensivste Bande bei 11.6 eV konnten nicht eindeutig interpretiert werden. Neben dem Tropyl erscheint bei etwa 10.55 eV sein dissoziatives Zersetzungsprodukt, das Cyclopentadienylkation. Die IE(ad) des Borylenkomplex [(CO)5CrBN(SiMe3)2] wurde zu 7.1 eV bestimmt. Mit steigender Photonenenergie wurden alle CO-Liganden sequenziell abgespalten, während der Borligand auch bei 15 eV noch nicht dissoziierte. Von den fünf abgespaltenen CO-Liganden konnte die Auftrittsenergie bei 0 K unter Berücksichtigung der kinetischen Verschiebung gefittet werden. Durch einen einfachen thermodynamischen Zyklus wurden aus den Auftrittsenergien der Kationen die Bindungsenergien berechnet. Dabei zeigte sich, dass die zweite Bindungsenergie im Kation erheblich stärker ist als die erste. Dies deutet einen starken trans-Effekt des Borliganden an. In der Dissertation wurden die adiabatische Ionisierungsenergie der Moleküle sowie die Auftrittsenergien der Fragmente und die Bindungsenergien bestimmt. Zudem konnten Isomere anhand ihrer IR-Spektren unterschieden und ihre Dimerisierungsprodukte identifiziert werden. Damit wurden mit p-Terphenyl und 1PEN zwei weitere bedeutende Intermediate im Bildungsmechanismus von Ruß strukturell aufgeklärt. Die Beteiligung dieser Dimerisierungsprodukte am Bildungsmechanismus der PAK initiiert zukünftige Fragen. Was geschieht z.B. mit p-Terphenyl und 1PEN nach ihrer Bildung? Reagieren sie chemisch zu größeren Molekülen oder setzt bei ihnen bereits die Akkumulation zu Partikeln ein? Zusätzlich ist die Frage, ob Phenylpropargyl aus der Reaktion von Phenyl- und Propargylradikalen entsteht noch offen. Die erzielten Resultate haben einen wichtigen Schritt im Bildungsmechanismus der PAK identifiziert und damit die Grundlage für zukünftige Experimente gelegt. N2 - Brilliant light sources like free electron lasers (FEL) and synchrotrons can be used to investigate crystal structures, reactions, or surface properties. These light sources are applied due to their high photon flux and broad wavelength tunability. A free electron laser was employed in the presented work to identify isomers of hydrocarbon radicals and carbenes. By contrary, the photoionization properties of borylene and unsaturated radicals were observed using synchrotron radiation. The important results will be summarized in the following. The first experiment performed at the FEL facility was a test with allyl radicals. Allyl was a good test candidate for other hydrocarbon radicals due to its small change in the dipole moment and low density in the gas phase. Despite of the small change in the dipole moment and particle density a satisfying IR spectrum could be obtained with the IR-UV double resonance method and the observed bands were assigned according to literature. The 3-trifluoromethyl-3-phenyl-carbene (TFPC) was pyrolytically generated from 3-trifluoromethyl-3-phenyl-diazirine. A high percentage of the formed carbene rearranged to trifluorostyrene in the pyrolysis. In addition to the main product trifluorostyrene triplet TFPC was found as a minor product and identified by a comparison with computed IR spectra. Furthermore the barriers for the triplet and singlet transition state were calculated. As a last project with the FEL it was shown that the radicals 1-phenylpropargyl and 3-phenylpropargyl are distinguishable by IR spectroscopy and do not isomerize into each other or indenyl. Additionally, identical dimerisation products are formed in the observed mass channels m/z = 230 and 228, p-terphenyl and 1-phenylethynylnaphthalene (1PEN). This exclusive appearance of just one isomer in each mass channel instead of a broad variety was a striking discovery. Thus, their formation mechanism must be kinetical favored. Since the masses m/z = 230 and 228 were also found in a mass spectrometric study of benzene and acethylene, where their structures were not identified experimentally. The dimerization products p-terphenyl and 1PEN must be important intermediates in the soot formation. The first compound examined with synchrotron radiation was NTCDA. Its threshold photoelectron spectrum was recorded and analyzed applying the TPEPICO technique. The adiabatic ionization energy (IE(ad)) of NTCDA was determined as 9.66 eV. Five additional excited states were observed and assigned by quantum mechanical computations. In a similar project the IE(ad) of the cycloheptatienyl radical (tropyl) was identified to be 6.23 eV. With the help of a Franck-Condon simulation the two observed progressions were assigned to ν16+, a CC stretching and a combination of ν2+, an ringbreathing, and ν16+. Furthermore, the first excited triplet and singlet states were assigned according to literature. A shoulder at 9.85 eV might be the second triplet state or an excited vibration, while the most intense peak appears at 11.6 eV. A distinct assignment of the latter band was not possible employing computations. At approximately 10.55 eV the tropyl ion begins to photoionize dissociatively to form the cyclopentadienyl ion. This value is in good agreement with the appearance energy calculated using a thermochemical cycle. The IE(ad) of the borylene complex [(CO)5CrBN(SiMe3)2] was determined as 7.2 eV. With rising photon energy all five CO-ligands dissociate sequentially, while the boron ligand stays in place. Even at the highest measured energy value of 15 eV the boron ligand did not dissociate. The 0 K appearance energies of the fragments of this sequential CO loss were identified with a fitting procedure including the kinetic shift. Using a simple thermodynamic cycle the binding energies of the cationic complex were obtained. The higher second bond dissociation energy in comparison with the first one indicates a strong trans effect of the borylene ligand. Thermodynamic properties like the adiabatic ionization energy, the appearance energy of the fragments and binding energies were determined. Additionally, different isomers and their dimerization products were identified by their measured IR spectrum. With these experiments the structure of the dimerization products p-terphenyl and 1PEN, two important intermediates in soot formation, were resolved. These dimerization products initialize future questions: What will happen with p-terphenyl and 1PEN after their formation? Will they be involved in a subsequent chemical reaction or start to accumulate? These questions and whether the phenylpropargyl radicals are formed in a reaction of benzene with propargyl radicals should be answered in the future. The obtained results identified an important step in the mechanism of soot production and are the basis for further experiments. KW - Synchrotronstrahlung KW - Freie-Elektronen-Laser KW - Ungesättigte Verbindungen KW - Fotoionisation KW - synchrotron radiation KW - free electron laser KW - infrared KW - photoionization KW - gas phase KW - Fel KW - Infrarot KW - Photoionisation KW - Polycyclische Aromaten KW - Reaktive Zwischenstufe KW - Isomer KW - Gasphase Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79108 ER -