TY - THES A1 - Beck, Sebastian T1 - Using optogenetics to influence the circadian clock of \(Drosophila\) \(melanogaster\) T1 - Die Verwendung der Optogenetik zur Beeinflussung der circadianen Uhr von \(Drosophila\) \(melanogaster\) N2 - Almost all life forms on earth have adapted to the most impactful and most predictable recurring change in environmental condition, the cycle of day and night, caused by the axial rotation of the planet. As a result many animals have evolved intricate endogenous clocks, which adapt and synchronize the organisms’ physiology, metabolism and behaviour to the daily change in environmental conditions. The scientific field researching these endogenous clocks is called chronobiology and has steadily grown in size, scope and relevance since the works of the earliest pioneers in the 1960s. The number one model organism for the research of circadian clocks is the fruit fly, Drosophila melanogaster, whose clock serves as the entry point to understanding the basic inner workings of such an intricately constructed endogenous timekeeping system. In this thesis it was attempted to combine the research on the circadian clock with the techniques of optogenetics, a fairly new scientific field, launched by the discovery of Channelrhodopsin 2 just over 15 years ago. Channelrhodopsin 2 is a light-gated ion channel found in the green alga Chlamydomonas reinhardtii. In optogenetics, researches use these light-gated ion channels like Channelrhodopsin 2 by heterologously expressing them in cells and tissues of other organisms, which can then be stimulated by the application of light. This is most useful when studying neurons, as these channels provide an almost non-invasive tool to depolarize the neuronal plasma membranes at will. The goal of this thesis was to develop an optogenetic tool, which would be able to influence and phase shift the circadian clock of Drosophila melanogaster upon illumination. A phase shift is the adaptive response of the circadian clock to an outside stimulus that signals a change in the environmental light cycle. An optogenetic tool, able to influence and phase shift the circadian clock predictably and reliably, would open up many new ways and methods of researching the neuronal network of the clock and which neurons communicate to what extent, ultimately synchronizing the network. The first optogenetic tool to be tested in the circadian clock of Drosophila melanogaster was ChR2-XXL, a channelrhodopsin variant with dramatically increased expression levels and photocurrents combined with a prolonged open state. The specific expression of ChR2-XXL and of later constructs was facilitated by deploying the three different clock-specific GAL4-driver lines, clk856-gal4, pdf-gal4 and mai179-gal4. Although ChR2-XXL was shown to be highly effective at depolarizing neurons, these stimulations proved to be unable to significantly phase shift the circadian clock of Drosophila. The second series of experiments was conducted with the conceptually novel optogenetic tools Olf-bPAC and SthK-bPAC, which respectively combine a cyclic nucleotide-gated ion channel (Olf and SthK) with the light-activated adenylyl-cyclase bPAC. These tools proved to be quite useful when expressed in the motor neurons of instar-3 larvae of Drosophila, paralyzing the larvae upon illumination, as well as affecting body length. This way, these new tools could be precisely characterized, spawning a successfully published research paper, centered around their electrophysiological characterization and their applicability in model organisms like Drosophila. In the circadian clock however, these tools caused substantial damage, producing severe arrhythmicity and anomalies in neuronal development. Using a temperature-sensitive GAL80-line to delay the expression until after the flies had eclosed, yielded no positive results either. The last series of experiments saw the use of another new series of optogenetic tools, modelled after the Olf-bPAC, with bPAC swapped out for CyclOp, a membrane-bound guanylyl-cyclase, coupled with less potent versions of the Olf. This final attempt however also ended up being unsuccessful. While these tools could efficiently depolarize neuronal membranes upon illumination, they were ultimately unable to stimulate the circadian clock in way that would cause it to phase shift. Taken together, these mostly negative results indicate that an optogenetic manipulation of the circadian clock of Drosophila melanogaster is an extremely challenging subject. As light already constitutes the most impactful environmental factor on the circadian clock, the combination of chronobiology with optogenetics demands the parameters of the conducted experiments to be tuned with an extremely high degree of precision, if one hopes to receive positive results from these types of experiments at all. N2 - Nahezu alle Lebewesen der Erde haben sich an den Tag-Nacht-Zyklus angepasst, die einflussreichste und verlässlichste wiederkehrende Veränderung der Umwelt-bedingungen, verursacht durch die axiale Rotation des Planeten. Daraus resultierend haben viele Tiere komplizierte innere Uhren entwickelt, welche ihre Physiologie, ihren Stoffwechsel und ihr Verhalten an die tägliche Veränderung der natürlichen Bedingungen anpassen. Das Wissenschaftsfeld, das sich der Erforschung dieser inneren Uhren widmet, wird Chronobiologie genannt und hat seit der Arbeit der ersten Pioniere ab 1960 stetig an Größe und Relevanz gewonnen. Der prominenteste Modellorganismus für die Erforschung der circadianen Uhr ist Drosophila melanogaster, deren Uhr als Ansatzpunkt dient, die grundlegenden Vorgänge eines derart komplexen, endogenen Taktsystems zu verstehen. In dieser Thesis wurde versucht die Forschung an der circadianen Uhr mit den Techniken der Optogenetik zu kombinieren, eines jungen Forschungsfeldes, welches durch die Entdeckung von Channelrhodpsin 2 vor über 15 Jahren eröffnet wurde. Channelrhodopsin 2 ist ein Licht-gesteuerter Ionenkanal, der in der Grünalge Chlamydomonas reinhardtii entdeckt wurde. In der Optogenetik nutzen Forscher diese Licht-gesteuerten Ionenkanäle, indem sie sie in den Zellen anderer Organismen exprimieren, welche dann durch Licht stimuliert werden können. Dies ist besonders nützlich bei der Untersuchung von Neuronen, da diese Kanäle ein nahezu nicht-invasives Werkzeug zur Depolarisation neuronaler Membranen bieten. Das Ziel dieser Thesis war es, ein optogenetisches Werkzeug zu entwickeln, welches die circadiane Uhr von Drosophila melanogaster durch Licht manipulieren und deren Phase verschieben kann. Eine Phasenverschiebung ist die adaptive Antwort der circadianen Uhr auf einen äußeren Reiz, welcher eine Veränderung des natürlichen Lichtzyklus signalisiert. Ein optogenetisches Werkzeug, das die Phase der inneren Uhr verlässlich verschieben kann, würde viele neue Möglichkeiten zur Erforschung des neuronalen Uhrnetzwerks eröffnen und wie die Neuronen miteinander kommunizieren um das Netzwerk zu synchronisieren. Das erste optogenetische Werkzeug das in der circadianen Uhr von Drosophila melanogaster getestet wurde war „ChR2-XXL“, eine Channelrhodopsin-Variante mit erhöhter Expression und Photoströmen, gepaart mit einem verlängerten geöffneten Zustand. Die spezifische Expression von ChR2-XXL und auch die späterer Konstrukte wurde durch die Verwendung der drei Uhr-spezifischen GAL4-Treiberlinien clk856-gal4, pdf-gal4 und mai179-gal4 bewerkstelligt. Obwohl bereits gezeigt wurde, dass ChR2-XXL höchst effektiv die Depolarisierung von Neuronen bewirkt, waren diese Stimulationen jedoch nicht in der Lage die Phase der circadianen Uhr von Drosophila signifikant zu verschieben. Die zweite Serie an Versuchen wurde mit den konzeptionell neuartigen optogenetischen Werkzeugen Olf-bPAC und SthK-bPAC durchgeführt, welche jeweils einen durch zyklische Nukleotide gesteuerten Ionenkanal (Olf und SthK) mit der Licht-gesteuerten Adenylatcyclase bPAC kombinieren. Diese Werkzeuge erwiesen sich als äußert nützlich, solange sie in den Motoneuronen von Drosophila-Larven im dritten Larvenstadium exprimiert wurden, wo sie bei Beleuchtung die Larven sowohl paralysierten, als auch deren Körperlänge beeinflussten. Auf diese Weise konnten diese neuen Werkzeuge präzise charakterisiert werden, was in der erfolgreichen Veröffentlichung eines Forschungsartikels mündete, welcher hauptsächlich von der elektrophysiologischen Charakterisierung der Werkzeuge handelte und von deren Anwendungsmöglichkeiten in Modellorganismen wie Drosophila. In der circadianen Uhr verursachten diese Werkzeuge jedoch substantielle Schäden und produzierten schwere Arrhythmie und Anomalien in der neuronalen Entwicklung. Die Verwendung einer temperatur-sensitiven GAL80-Linie um die Expression zu verzögern, erzeugte ebenfalls keinerlei positive Ergebnisse. Für die letzte Serie an Experimenten wurde eine weitere Reihe neuer optogenetischer Werkzeuge verwendet, orientiert an Olf-bPAC und SthK-bPAC, wobei bPAC durch die membrangebundene Guanylatcyclase „CyclOp“ ausgetauscht wurde, welche wiederrum mit weniger wirkstarken Olf-Varianten kombiniert wurde. Dieser letzte Ansatz scheiterte jedoch ebenfalls. Obwohl diese neuen Werkzeuge in der Lage waren die Neuronenmembran bei Beleuchtung effektiv zu depolarisieren, vermochten sie es letztendlich nicht eine Phasenverschiebung zu bewirken. Zusammengenommen zeigen diese überwiegend negativen Ergebnisse, dass die optogenetische Manipulation der circadianen Uhr von Drosophila melanogaster ein extrem anspruchsvolles Thema ist. Da Licht bereits ohnehin den einflussreichsten Umweltfaktor für die circadiane Uhr darstellt, verlangt die Kombination von Chronobiologie und Optogenetik eine extrem präzise Feinabstimmung der Versuchsparameter, um überhaupt darauf hoffen zu dürfen, positive Ergebnisse mit derlei Versuchen zu erzeugen. KW - Chronobiologie KW - Optogenetik KW - Taufliege KW - Optogenetics KW - Chronobiology KW - Channelrhodopsin KW - Drosophila melanogaster Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184952 ER - TY - THES A1 - Grotemeyer, Alexander T1 - Characterisation and application of new optogenetic tools in \(Drosophila\) \(melanogaster\) T1 - Charakterisierung und Anwendung neuer optogenetischer Werkzeuge in \(Drosophila\) \(melanogaster\) N2 - Since Channelrhodopsins has been described first and introduced successfully in freely moving animals (Nagel et al., 2003 and 2005), tremendous impact has been made in this interesting field of neuroscience. Subsequently, many different optogenetic tools have been described and used to address long-lasting scientific issues. Furthermore, beside the ‘classical’ Channelrhodopsin-2 (ChR2), basically a cation-selective ion channel, also altered ChR2 descendants, anion selective channels and light-sensitive metabotropic proteins have expanded the optogenetic toolbox. However, in spite of this variety of different tools most researches still pick Channelrhodopsin-2 for their optogenetic approaches due to its well-known kinetics. In this thesis, an improved Channelrhodopsin, Channelrhodopsin2-XXM (ChR2XXM), is described, which might become an useful tool to provide ambitious neuroscientific approaches by dint of its characteristics. Here, ChR2XXM was chosen to investigate the functional consequences of Drosophila larvae lacking latrophilin in their chordotonal organs. Finally, the functionality of GtACR, was checked at the Drosophila NMJ. For a in-depth characterisation, electrophysiology along with behavioural setups was employed. In detail, ChR2XXM was found to have a better cellular expression pattern, high spatiotemporal precision, substantial increased light sensitivity and improved affinity to its chromophore retinal, as compared to ChR2. Employing ChR2XXM, effects of latrophilin (dCIRL) on signal transmission in the chordotonal organ could be clarified with a minimum of side effects, e.g. possible heat response of the chordotonal organ, due to high light sensitivity. Moreover, optogenetic activation of the chordotonal organ, in vivo, led to behavioural changes. Additionally, GtACR1 was found to be effective to inhibit motoneuronal excitation but is accompanied by unexpected side effects. These results demonstrate that further improvement and research of optogenetic tools is highly valuable and required to enable researchers to choose the best fitting optogenetic tool to address their scientific questions. N2 - Seit dem Channelrhodopsine das erste Mal beschrieben und erfolgreich in lebende Tiere eingebracht wurden (Nagel et al., 2003 und 2005), kam es zu einem beträchtlichen Fortschritt in diesem interessanten Gebiet der Neurowissenschaften. In der nachfolgenden Zeit wurden viele verschiedene optogenetische Werkzeuge beschrieben und zur Bearbeitung neurowissenschaftlicher Fragestellungen angewandt. Des Weiteren haben neben dem „klassischen“ Channelrhodopsin-2 (ChR2), ein im Wesentlichen Kation selektiver Kanal, auch modifizierte ChR2 Abkömmlinge, Anion selektive Kanäle und Licht sensitive metabotrope Proteine, die opotogenetische Werkzeugkiste erweitert. Dennoch greifen die meisten Wissenschaftler trotz der Vielfalt an optogenetischen Werkzeugen meist noch zu Channelrhodopsin-2, da seine Wirkungseigenschaften sehr gut erforscht sind. In der nachfolgenden Arbeit wird ein weiterentwickeltes Channelrhodopsin, Channelrhodopsin2-XXM (ChR2XXM), beschrieben. Aufgrund seiner vielfältigen Eigenschaften stellt es ein vielversprechendes Werkzeug dar, vor allem für zukünftige neurowissenschaftliche Forschungsarbeiten. Hierbei wurde ChR2XXM eingesetzt, um zu untersuchen welche Auswirkungen das Fehlen von Latrophilin im Chordotonal Organ von Drosophilalarven hat. Schließlich wurde noch die Funktionalität von GtACR an der neuromuskulären Endplatte der Drosophila überprüft. Für die umfassende Charakterisierung wurden elektrophysiologische und verhaltensbasierte Experimente an Larven durchgeführt. Es konnte gezeigt werden, dass ChR2XXM aufgrund einer erhöhten Affinität zu dem Chromophore Retinal, im Vergleich zu ChR2 ein besseres zelluläres Expressionsmuster, eine bessere zeitliche Auflösung und eine erheblich höhere Lichtsensitiviät aufweist. Durch den Einsatz von ChR2XXM konnte, aufgrund der hohen Lichtsensitiviät, mit nur minimalen Nebeneffekten, wie z.B. mögliche Wärmeaktivierung des Chordotonalorgans, der Einfluss von Latrophilin (dCIRL) auf die Signaltransmission im Chordotonalorgan, aufgeklärt werden. Ferner führte eine optogenetische, in vivo, Aktivierung des Chordotonalorgans zu Verhaltensänderungen. Zusätzlich konnte gezeigt werden, dass GtACR1 zwar effektiv motoneuronale Erregung inhibieren kann, dies aber von unerwarteten Nebeneffekten begleitet wird. Diese Ergebnisse zeigen auf, dass weitere Forschung und Verbesserungen im Bereich der optogenetischen Werkzeuge sehr wertvoll und notwendig ist, um Wissenschaftlern zu erlauben das am besten geeignetste optogenetische Werkzeug für ihre wissenschaftlichen Fragestellungen auswählen zu können. KW - Optogenetik KW - Taufliege KW - Elektrophysiologie KW - Channelrhodopsin-2 KW - optogenetics KW - Drosophila melanogaster KW - Channelrhodopsin KW - Electrophysiology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178793 ER - TY - THES A1 - Hieke, Marie T1 - Synaptic arrangements and potential communication partners of \(Drosophila’s\) PDF-containing clock neurons within the accessory medulla T1 - Synaptische Konstellationen und potentielle Kommunikationspartner von \(Drosophila’s\) PDF-enthaltenden Uhrneuronen innerhalb der akzessorischen Medulla N2 - Endogenous clocks regulate physiological as well as behavioral rhythms within all organisms. They are well investigated in D. melanogaster on a molecular as well as anatomical level. The neuronal clock network within the brain represents the center for rhythmic activity control. One neuronal clock subgroup, the pigment dispersing factor (PDF) neurons, stands out for its importance in regulating rhythmic behavior. These neurons express the neuropeptide PDF (pigment dispersing factor). A small neuropil at the medulla’s edge, the accessory medulla (AME), is of special interest, as it has been determined as the main center for clock control. It is not only highly innervated by the PDF neurons but also by terminals of all other clock neuron subgroups. Furthermore, terminals of the photoreceptors provide light information to the AME. Many different types of neurons converge within the AME and afterward spread to their next target. Thereby the AME is supplied with information from a variety of brain regions. Among these neurons are the aminergic ones whose receptors’ are expressed in the PDF neurons. The present study sheds light onto putative synaptic partners and anatomical arrangements within the neuronal clock network, especially within the AME, as such knowledge is a prerequisite to understand circadian behavior. The aminergic neurons’ conspicuous vicinity to the PDF neurons suggests synaptic communication among them. Thus, based on former anatomical studies regarding this issue detailed light microscopic studies have been performed. Double immunolabellings, analyses of the spatial relation of pre- and postsynaptic sites of the individual neuron populations with respect to each other and the identification of putative synaptic partners using GRASP reenforce the hypothesis of synaptic interactions within the AME between dopaminergic/ serotonergic neurons and the PDF neurons. To shed light on the synaptic partners I performed first steps in array tomography, as it allows terrific informative analyses of fluorescent signals on an ultrastructural level. Therefore, I tested different ways of sample preparation in order to achieve and optimize fluorescent signals on 100 nm thin tissue sections and I made overlays with electron microscopic images. Furthermore, I made assumptions about synaptic modulations within the neuronal clock network via glial cells. I detected their cell bodies in close vicinity to the AME and PDFcontaining clock neurons. It has already been shown that glial cells modulate the release of PDF from s-LNvs’ terminals within the dorsal brain. On an anatomical level this modulation appears to exist also within the AME, as synaptic contacts that involve PDF-positive dendritic terminals are embedded into glial fibers. Intriguingly, these postsynaptic PDF fibers are often VIIAbstract part of dyadic or even multiple-contact sites in opposite to prolonged presynaptic active zonesimplicating complex neuronal interactions within the AME. To unravel possible mechanisms of such synaptic arrangements, I tried to localize the ABC transporter White. Its presence within glial cells would indicate a recycling mechanism of transmitted amines which allows their fast re-provision. Taken together, synapses accompanied by glial cells appear to be a common arrangement within the AME to regulate circadian behavior. The complexity of mechanisms that contribute in modulation of circadian information is reflected by the complex diversity of synaptic arrangements that involves obviously several types of neuron populations N2 - Endogene Uhren steuern sowohl physiologische als auch verhaltensbedingte Rhythmen bei allen Organismen. In D. melanogaster sind sie nicht nur auf molekularer sondern auch auf anatomischer Ebene bereits gut erforscht. Das neuronale Uhrnetzwerk im Gehirn stellt das Zentrum der Steuerung der rhythmischen Aktivität dar. Eine Uhrneuronengruppe sticht allein schon durch ihre besonderen anatomischen Eigenschaften hervor. Diese Neurone exprimieren das Neuropeptid PDF (pigment dispersing factor), welches zudem besonderen Einfluss auf die Lokomotionsaktivität der Fliege hat. Ein kleines Neuropil am Rande der Medulla, die akzessorische Medulla (AME) ist von besonderem Interesse, da neben seiner intensiven Innervation durch die PDF-Neurone auch Terminale aller anderen Uhrneuronengruppen zu finden sind. Zudem wird sie durch Terminale der Photorezeptoren mit Informatonen über die Lichtverhätnisse versorgt. Die AME erreichen des Weiteren Informationen aus vielen anderen Hirnregionen. Eine Vielzahl von Neuronentypen laufen in ihr zusammen, um sich anschließend wieder in verschiedenste Hirnareale zu verteilen. So wird die AME auch durchzogen von Fasern mit aminergem Inhalt, dessen Rezeptoren wiederum auf den PDF-Neuronen zu finden sind. Die vorliegende Arbeit gibt Aufschluss über vermutliche synaptische Partner und anatomische Anordnungen innerhalb des neuronalen Uhrnetzwerkes, insbesondere innerhalb der AME. Solch Wissen stellt eine Grundvoraussetzung dar, um zirkadianes Verhalten verstehen zu können. Die auffällige Nähe der aminergen Neurone zu den PDF Neuronen lässt eine synaptische Interaktion zwischen ihnen vermuten. Deshalb wurden basierend auf vorangegangen Studien detailiertere Untersuchungen dieser Thematik durchgeführt. So wird die Hypothese über synaptische Interaktionen innerhalb der AME zwischen dopaminergen/ serotonergen Neuronen und den PDF Neuronen bestärkt mittels Doppelimmunofärbungen, gegenüberstellende Analysen über die räumlichen Nähe von prä- und postsynaptischen Stellen der jeweiligen Neuronenpopulationen und durch die Identifikation vermutlicher synaptischer Partner unter Verwendung von GRASP. Zur möglichen Identifikation der synaptischen Partner unternahm ich erste Schritte in der Array Tomographie, welche hochinformative Analysen von fluoreszierenden Signalen auf einem ultrastrukturellen Level ermöglicht. Dazu testete ich verschieden Wege der Gewebepräparation, um Flureszenzsignale zu erhalten bzw. zu optimieren und bildete erste Überlagerungen der Fluoreszenz- und Elektronenmikrskopbilder. Die Auswertung der elektronenmikroskopischen Bilder erlaubten Mutmaßungen über mö- gliche synaptische Modulationen innerhalb des neuronalen Uhrnetzwerkes durch Gliazellen. Ihre Zellkörper fand ich in unmittelbarer Nähe zu den PDF Neuronen. Im dorsalen Hirn wurden neuronale Modulationen an den kleinen PDF Neuronen durch Gliazellen bereits festgestellt. Auf anatomischer Ebene scheint diese Modulation auch innerhalb der AME zu erfolgen, da synaptische Kontakte, welche PDF-positive Dendriten involvieren, von Gliafasern umgeben sind. Interessanterweise sind diese postsynaptischen PDF Fasern dabei oftmals Teil dyadischer oder sogar multipler Kontakte, die sich gegenüber einer ausgedehnten aktiven Zone befinden. Um mögliche Mechanismen solcher synaptischer Anordnungen zu erklären, versuchte ich den ABC Transporter White im Hirn von Drosophila zu lokalisieren. Seine Präsenz in Gliazellen würde auf einen Recyclingmechanismus hindeuten, welcher eine schnelle Wiederbereitstellung des Transmiters ermöglichen würde. Zusammengefasst scheinen Synapsen mit postsynaptischen PDF-Neuronen in Begleitung von Gliazellen, ein gebräuchliches synaptisches Arrangement innerhalb der AME dazustellen. Diese komplexe Diversität der synaptischen Anordnung reflektiert die komplexen Mechanismen, welche der Verarbeitung der zirkadianen Informationen zugrunde liegen KW - Taufliege KW - Chronobiologie KW - Endogene Rhythmik KW - PDF neurons KW - glia cells KW - circadian clock KW - accessory medulla KW - sleep KW - aminergic neurons KW - synapses KW - Gliazelle KW - Aminerge Nervenzelle KW - Pigmentdispergierender Faktor KW - Drosophila melanogaster Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175988 ER - TY - THES A1 - Schubert, Frank Klaus T1 - The circadian clock network of \(Drosophila\) \(melanogaster\) T1 - Das Uhrneuronennetzwerk von \(Drosophila\) \(melanogaster\) N2 - All living organisms need timekeeping mechanisms to track and anticipate cyclic changes in their environment. The ability to prepare for and respond to daily and seasonal changes is endowed by circadian clocks. The systemic features and molecular mechanisms that drive circadian rhythmicity are highly conserved across kingdoms. Therefore, Drosophila melanogaster with its relatively small brain (ca. 135.000 neurons) and the outstanding genetic tools that are available, is a perfect model to investigate the properties and relevance of the circadian system in a complex, but yet comprehensible organism. The last 50 years of chronobiological research in the fruit fly resulted in a deep understanding of the molecular machinery that drives circadian rhythmicity, and various histological studies revealed the neural substrate of the circadian system. However, a detailed neuroanatomical and physiological description on the single-cell level has still to be acquired. Thus, I employed a multicolor labeling approach to characterize the clock network of Drosophila melanogaster with single-cell resolution and additionally investigated the putative in- and output sites of selected neurons. To further study the functional hierarchy within the clock network and to monitor the “ticking clock“ over the course of several circadian cycles, I established a method, which allows us to follow the accumulation and degradation of the core clock genes in living brain explants by the means of bioluminescence imaging of single-cells. N2 - Alle lebenden Organismen benötigen Mechanismen zur Zeitmessung, um sich auf periodisch wiederkehrende Umweltveränderungen einstellen zu können. Zirkadiane Uhren verleihen die Fähigkeit, tages- und jahreszeitliche Veränderungen vorauszuahnen und sich an diese anzupassen. Die Eigenschaften des zirkadianen Systems, als auch dessen molekularer Mechanismus scheinen über sämtliche Taxa konserviert zu sein. Daher bietet es sich an, die leicht handhabbare Taufliege Drosophila melanogaster als Modellorganismus zu benutzen. Das relativ kleine Gehirn (ca. 135.000 Neurone) und die herausragende genetische Zugänglichkeit der Fliege prädestinieren sie dazu, das zirkadiane System in einem komplexen, aber dennoch überschaubaren Kontext zu untersuchen. Die vergangenen 50 Jahre chronobiologischer Forschung an Drosophila führten zu einem tiefgreifenden Verständnis der molekularen Mechanismen, die für tageszeitliche Rhythmizität verantwortlich sind. Anhand zahlreicher histologischer Untersuchungen wurde die neuronale Grundlage, das Uhrneuronennetzwerk im zentralen Nervensystem, beschrieben. Nichtsdestotrotz, gibt es noch immer keine detaillierte neuroanatomische und physiologische Charakterisierung der Uhrneurone auf Einzelzellebene. Daher war das Ziel der vorliegenden Arbeit die umfangreiche Beschreibung der Einzelzellanatomie ausgewählter Uhrneurone sowie die Identifikation mutmaßlicher post- und präsynaptischer Verzweigungen. Darüber hinaus war es mir möglich, eine Methode zur Messung von Biolumineszenzrhythmen in explantierten lebenden Gehirnen zu etablieren. Mit einem Lumineszenzmikroskop können die Proteinoszillationen einzelner Uhrneurone über die Dauer mehrerer zirkadianer Zyklen aufgezeichnet werden, wodurch neue funktionale Studien ermöglicht werden. KW - Taufliege KW - Chronobiologie KW - Tagesrhythmus KW - Neuroanatomie KW - Drosophila melanogaster KW - circadian rhythms KW - single cell anatomy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157136 ER - TY - THES A1 - Jungbauer [geb. Ulzhöfer], Sandra Gabi T1 - Die Rolle präsynaptischer Proteine Aktiver Zonen bei konditionierten Lernprozessen T1 - The role of presynaptic active zone proteins in conditioned learning behaviour N2 - Synaptische Plastizität wird als Grundlage für Lern- und Gedächtnisprozesse in unserem Gehirn angesehen. Aktive Zonen (AZ) und ihre spezifischen Proteine modulieren diesen Prozess und bahnen essentielle Vorgänge der synaptischen Transmission. In dieser Arbeit wurden drei zentrale Proteine Aktiver Zonen - Bruchpilot, RIM (Rab3 interacting molecule) und Fife - untersucht und ihre Rolle bei konditionierten Lernprozessen in Drosophila melanogaster Larven geprüft. Hierzu wurde das etablierte Paradigma des larvalen appetitiven olfaktorischen Lernens genutzt, bei dem eine Gruppe von Larven lernt, einen Duft mit einem gustatorischen Verstärker zu koppeln. Durch die vielfältigen genetischen Manipulationsmöglichkeiten des Modellorganismus war es möglich, die Funktion der Proteine bei assoziativen Lernvorgängen selektiv zu betrachten. Bruchpilot wird für den funktionellen Aufbau Aktiver Zonen in Drosophila benötigt und ist wichtig für die Akkumulation von Calcium-Kanälen in der Nähe von AZ. Durch gentechnische Veränderungen dieses Proteins ließ sich jedoch keine Beeinträchtigung im olfaktorischen Lernverhalten von Drosophila Larven beobachten. RIM fungiert durch seine Interaktionsdomänen als Bindeglied zwischen verschiedensten Effektoren und hat Einfluss auf synaptische Plastizität. Es wurde gezeigt, dass eine Punktmutation in der C2A-Domäne von RIM beim Menschen gleichzeitig zur Retinadegeneration und zu einem gesteigert verbalen IQ (Intelligenzquotient) führt. Eine durch die hohe Homologie vergleichbare Mutation im Drosophila-Genom resultierte nicht in einem veränderten Phänotyp im olfaktorischen Lernen. Fife ist ein Protein, das für eine funktionsfähige Architektur von AZ und damit u.a. für den reibungslosen Vesikelverkehr zuständig ist. Es zeigte sich, dass dieses Protein auch synaptische Plastizität und Lernvorgänge beeinflusst. Die Ergebnisse der vorliegenden Arbeit sind ein Beitrag, um die Zusammenhänge der synaptischen Plastizität und die Funktion Aktiver Zonen Proteine besser begreifen zu können. Hervorzuheben dabei ist, dass die Bruchpilot- und RIM-Mutanten-Larven keinen veränderten Phänotyp, bzw. bei Fife nur teilweise einen eingeschränkten Phänotyp im olfaktorischen larvalen Lernen im Vergleich zu den Wildtyp-Kontrollen zeigten. Gleichwohl man früher schon signifikante strukturelle Veränderungen an Aktiven Zonen dieser Mutanten an der neuromuskulären Endplatte und auch Effekte auf das Verhalten in adulten Drosophila gefunden hat. Es wird entscheidend sein, den Zusammenhang zwischen Struktur und Funktion Aktiver Zonen Proteine weiter zu konkretisieren. N2 - Synaptic plasticity is considered to be the basis for learning and memory in our brain. Active zones (AZ) and its proteins orchestrate this process and are crucial to synaptic transmission. This work focused on three essential AZ proteins - Bruchpilot, RIM (Rab3 interacting molecule) and Fife- and their role in conditioned learning behaviour in Drosophila melanogaster larvae. To do so the well-established appetitive olfactory learning paradigm was used, in which a group of larvae is trained to learn that a specific odour is linked to a gustatory reinforcer. Due to the various genetic possibilities of Drosophila larvae it was possible to specifically study the function of each protein in associative learning behaviour. Bruchpilot is important for AZ structure in Drosophila and the accumulation of calcium channels in close proximity to active zones. Genetic manipulation of this protein did not impair olfactory learning in Drosophila larvae. Through its various interaction domains RIM connects with different molecular effectors and modulates synaptic plasticity. In Humans a point mutation in the C2A-domain of the protein leads to cone rod dystrophy and an elevated verbal IQ at the same time. A similar mutation in the Drosophila genome, thanks to the high genetic homologies, did not result in an altered phenotype. Fife is responsible for normal AZ architecture and also for efficient vesicle trafficking. It was shown that this protein modulates synaptic plasticity and learning processes. The results of this work contribute to a better understanding of synaptic plasticity and the function of active zone proteins. I would like to point out that Bruchpilot and RIM mutants did not show modified phenotypes in appetitive olfactory learning whereas Fife mutants were partially impaired in the tested paradigm compared to control groups. Although in previous works those mutants were found to cause structural changes at active zones in neuromuscular junctions and to affect learning behaviour in Drosophila adults. In future studies it will be crucial to determine the particular task and to specify the structure to function relationship of each AZ protein. KW - Plastizität KW - Aktive Zone KW - Konditioniertes Lernen KW - Drosophila melanogaster KW - Proteine Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169090 ER - TY - THES A1 - Gehring, Jennifer T1 - Functional analysis of the latrophilin homolog dCirl in Drosophila melanogaster T1 - Funktionelle Analyse des latrophilin Homologs dCirl in Drosophila melanogaster N2 - Latrophilin, alternatively named calcium-independent receptor of α-latrotoxin (CIRL), resembles a prototype of the adhesion class G-protein coupled receptors (GPCRs). Initially identified as a high-affinity receptor for α-latrotoxin, a component of the black widow spider, latrophilins are now associated with various distinct functions, such as synaptic exocytosis, tissue polarity and fertility (Tobaben et al., 2002; Langenhan et al., 2009; Promel et al., 2012). Despite these exploratory efforts the precise subcellular localisation as well as the endogenous ligand of CIRL still remains elusive. In this work genetic experiments, imaging approaches and behavioural studies have been used to unravel the localisation and physiological function of the latrophilin homolog dCirl in Drosophila melanogaster. Containing only one latrophilin homolog together with its genetic accessibility and well-established transgenic approaches, Drosophila seemed an ideally suited model organism. The present study showed that dCirl is widely expressed in the larval central nervous system including moto- and sensory neurons. Further, this work revealed that removal of the latrophilin homolog does not greatly affect synaptic transmission but it seems that aspects of the postsynaptic structural layout are controlled by dCIRL in the fruit fly. Additionally, dCirl expression at the transcriptional level was confirmed in larval and adult chordotonal organs, specialised mechanosensors implicated in proprioception (Eberl, 1999). Expression of dCIRL at the protein level could not yet been confirmed in moto- and sensory neurons likely due to low endogenous expression. However, behavioural studies using dCirl knockout mutant larvae indicated a putative mechanosensory function of dCIRL regarding touch sensitivity and locomotion behaviour. The second part of this thesis presents a strategy to examine interactions between several presynaptic proteins in living cells. The attempt described in this work is based on the discovery that GFP when split into two non-fluorescent fragments can form a fluorescent complex. The association of the fragments can be facilitated by fusing them to two proteins that interact with each other. Therefore, the split GFP method enables direct visualization of synaptic protein interactions in living cells. In initial experiments I could show that full length reporter protein fusions with n-Synaptobrevin (n-Syb), Synaptotagmin (Syt) and Syntaxin (Syx) allow expression in Drosophila and confirmed that fusion to either end of each synaptic protein did not impair expression or influence the viability of transgenic flies. Further, transgenes containing protein fusions of Syx, Syt, and n-Syb with split GFP fragments were established in previous studies (Gehring, 2010). The present work characterises the interaction of these protein fusions during different stages of synaptic vesicle turnover at active zones such as synaptic vesicle docking at the presynaptic membrane and vesicle fusion. These results suggest that the spGFP assay seems only partly suitable for resolving fast and transient protein-protein interactions at larval Drosophila active zones in vivo. N2 - Latrophilin, auch als Calcium-unabhängiger Rezeptor für α-Latrotoxin (CIRL) bezeichnet, repräsentiert einen Prototyp der Adhäsions G-Protein gekoppelten Rezeptorklasse. Ursprünglich als hoch-affiner Rezeptor für α-Latrotoxin entdeckt, werden Latrophiline heute mit zahlreichen verschiedenen Funktionen, wie synaptischer Exozytose, Gewebepolarität und Fertilität assoziiert (Tobaben et al., 2002; Langenhan et al., 2009; Promel et al., 2012). Trotz dieser Fortschritte sind die genaue subzelluläre Lokalisation sowie der endogene Ligand noch weitgehend unbekannt. Diese Studie verwendet genetische Ansätze, bildgebende Verfahren und Verhaltensstudien, um die Lokalisation und physiologische Funktion des Latrophilinhomologs dCirl in Drosophila melanogaster aufzuklären. Die Tatsache, dass Drosophila nur ein einziges Latrophilin Homolog besitzt, zusammen mit den genetischen Möglichkeiten und den sehr gut etablierten transgenen Methoden, machen die Fruchtfliege zu einem idealen Modellorganismus. Die erhobenen Daten belegen, dass dCirl verstärkt im larvalen Nervensystem, einschließlich motorischer und sensorischer Neurone, exprimiert wird. Weiterhin konnte gezeigt werden, dass in dCirl Knockout-Mutanten die basale synaptische Transmission unverändert ist, vermutlich aber Teile der postsynaptischen Struktur durch dCIRL in der Fruchtfliege kontrolliert werden. Zusätzlich konnte nachgewiesen werden, dass dCirl auf Transkriptionsebene in den larvalen und adulten Chordotonalorganen exprimiert wird, spezifische Mechanosensoren, die an der Propriozeption beteiligt sind (Eberl, 1999). Die Expression von dCIRL auf Proteinebene in motorischen und sensorischen Neuronen konnte aufgrund niedriger endogener Expressionslevel noch nicht verifiziert werden. Allerdings deuten Verhaltensstudien, die Berührungsempfindlichkeit und Lokomotion untersuchen, auf eine mögliche mechanosensorische Funktion von dCIRL in den Larven von Drosophila hin. Der zweite Teil dieser Arbeit zeigt eine Strategie auf, die es ermöglicht, das Zusammenspiel verschiedener präsynaptischer Proteine in vivo zu untersuchen. Die hier beschriebene Methode basiert auf der Entdeckung, dass sich zwei nicht-fluoreszierende Fragmente des grün leuchtenden Proteins (GFP), zu einem fluoreszierenden Komplex zusammenlagern können. Diese geteilten GFP-Fragmente (split-GFPs) werden mit zwei unterschiedlichen Proteinen fusioniert, die miteinander interagieren. Die split-GFP Methode ermöglicht so eine direkte Visualisierung von Protein-Protein-Interaktionen in lebenden Zellen. In ersten Experimenten konnte ich zeigen, dass Synaptobrevin (n-Syb), Synaptotagmin (Syt) und Syntaxin (Syx), die mit vollständigen Fluorophoren markiert wurden, für die Expression in Drosophila geeignet sind und bestätigen, dass sowohl die N-terminale als auch die C-terminale Proteinfusion möglich ist. Zudem konnte durch diese Versuche die Überlebensfähigkeit der transgenen Fliegen überprüft werden. In vorangegangenen Studien wurden Transgene hergestellt, die Proteinfusionen von n-Syb, Syt und Syx mit split-GFP Fragmenten enthalten (Gehring, 2010). Die vorliegende Arbeit charakterisiert die Wechselwirkung dieser Proteinfusionen während unterschiedlicher Stufen der synaptischen Vesikelfreisetzung an der aktiven Zone, wie beispielsweise dem Vesikel-docking an der präsynaptischen Membran und der Vesikelfusion. Die Ergebnisse dieser Studie deuten darauf hin, dass die split-GFP Technik nur bedingt geeignet ist um schnelle und transiente Protein-Protein Interaktionen an der larvalen aktiven Zone von Drosophila in vivo darzustellen. KW - Taufliege KW - G-Protein gekoppelte Rezeptor KW - Drosophila melanogaster KW - Cirl KW - Latrophilin Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-101061 ER - TY - THES A1 - Batsching, Sophie Johanna T1 - Behavior under uncontrollable stress in \(Drosophila\) \(melanogaster\) - Learned Helplessness revisited T1 - Verhalten unter nicht kontrollierbarem Stress - Neubetrachtung der Erlernten Hilflosigkeit bei \(Drosophila\) \(melanogaster\) N2 - In order to select the appropriate behavior, it is important to choose the right behavior at the right time out of many options. It still remains unclear nowadays how exactly this is managed. To address this question, I expose flies (Drosophila melanogaster) to uncontrollable stress to study their behavior under restrictive circumstances by using the so-called shock box. Exposing animals to uncontrollable stress may have an impact on subsequent behavior and can last for some time. The animal learns that whatever it does, it cannot change the situation and therefore can develop something called learned helplessness. The term was first conceptualized by two American psychologists Maier and Seligman (1967), who discovered this phenomenon while doing experiments with dogs. They found out that dogs which are exposed to inescapable stress, later fail in a learning task (‘shuttle box’). In this work the walking patterns of three different types of experimental flies, walking in a small dark chamber, were evaluated. Using the triadic design (Seligman and Maier, 1967), flies were either exposed to electric shock randomly (yoked), could turn it off by being active (master) or did not receive punishment at all (control). Master flies were shocked whenever they sat for more than 0.9 seconds. At the same time yoked flies received a shock as well independent of what they were doing, to ensure the same amount of shocks received and to create random punishment pattern for the yoked group. With this so-called no-idleness paradigm flies were conditioned either 10 minutes, which resulted in a short (3 minutes) after-effect, or 20 minutes that turned out to be more stable (10 minutes). In a second part, the behavior during the 20 minute conditioning and a 10 minutes post-test was described in detail. Female flies of the yoked group developed lower activity levels, longer pauses and walked more slowly than master and control flies during conditioning. In the time after the shocks while still in the box, the yoked flies also reduced the frequency and duration of walking bouts as well as their walking speed. Additionally, they took more time to resume walking after the onset of an electric shock than master flies (escape latency) and turned out to make less pauses lasting between 1-1.5 seconds which supports the finding concerning the escape latency. Male flies, tested under the same conditions, showed a slightly weaker after-effect regarding the difference between master and yoked during conditioning and post-test when compared to female flies. When comparing the 20 minutes conditioning with subsequent 10 minutes test in the heat and the shock box in parallel, one finds the same effect: Flies which do not have control over the shocks, lower their activity, make less but longer pauses and walk more slowly than their respective master flies. Despite the similar effect of heat and shock on the flies, some differences between the devices occurred, which can partly be explained by different humidity conditions as well as by different surfaces within the chambers. When the control over the shocks is given back to the yoked flies, it takes them about seven minutes to realize it. One could also show that dopamine levels in the brain were reduced in comparison to flies which did not receive shocks. Yoked flies also were impaired in a place learning task (place learning) and their reaction to light (exit from the box towards the light) directly after conditioning. After characterizing the walking behavior in the chambers, the study deals with the question whether the effects observed in the chambers transfer to different environments. In free walk they only differed from flies which did not receive electric shocks and no effect of uncontrollability was transferred to courtship behavior. Handling as the cause could be excluded. Since handling could be exclude to be the cause of losing the effect, I assumed that the behavior shown in the boxes are context depend. Not only were the after-effects of inescapable shock subject of the current research also the impact of the rearing situation on the response to electric shock was investigated in the present study. Flies which grew up in a single-reared situation turned out to be less affected by inescapable stress in both sexes. In the next part, the first steps to unravel the neuronal underpinning were taken. A mutant – fumin – which is defective in the dopamine re-uptake transporter showed less reaction to inescapable foot shocks, while a mutant for the gene which encodes an adenylate cyclase (rutabaga2080) resulted in a good score during conditioning, but showed no stable after-effect. Downregulating the expression of the adenylate cyclase gene (rutabaga) in different parts of the mushroom bodies showed, that rutabaga is necessary in the α’β’-lobes for expressing the differences between master and yoked flies in the no-idleness paradigm. The study further confirmed previous findings, that rutabaga is needed in operant but not in classical conditioning. As a result, the study could show that not the stimulus itself causes the state of uncontrollability but the fact that the fly learned that it was not in control of the stimulus. This state turned out to be context and time dependent. N2 - Eine wichtige Aufgabe für ein Tier ist es, das passende Verhalten zur richtigen Zeit zu wählen. Heutzutage ist immer noch unklar, wie dieser Prozess exakt abläuft. Zur Untersuchung dieser Frage werden Fliegen (Drosophila melanogaster) in der so genannten Schockbox unkontrollierbarem Stress ausgesetzt um auf diesem Weg Verhaltenskontrolle unter stressigen und stark restriktiven Umständen untersuchen zu können. Wenn Tiere unkontrollierbarem Stress ausgesetzt sind, kann dieser Zustand sowohl langanhaltend sein als auch Einfluss auf das Folgeverhalten haben. Das Tier lernt, dass alle Aktivitäten, die es in dieser Situation unternimmt keinen Einfluss auf die Situation haben. Dadurch kann das Tier einen Zustand der sogenannten Erlernten Hilflosigkeit entwickeln. Dieser Begriff wurde von zwei amerikanischen Psychologen, Maier und Seligman (1976), geprägt, die dieses Phänomen während Experimenten mit Hunden entdeckten und konzipierten. Sie fanden heraus, dass Hunde, die unkontrollierbarem Stress ausgesetzt waren, an einer anschließend gestellten Lernaufgabe scheiterten (‚shuttle-box‘). Gegenstand der vorliegenden Arbeit ist es, das Laufmuster in einer schmalen und kleinen Kammer an drei verschiedenen Versuchsgruppen von Fliegen zu analysieren. Unter Verwendung des sogenannten triadischen Konzepts (Seligman and Maier, 1967) wurden die Fliegen drei unterschiedlichen Situationen ausgesetzt: Zufällige Elektroschocks (Yoked-Gruppe), durch Laufen abschaltbare Elektroschocks (Master-Gruppe) oder keine Bestrafung (Kontroll-Gruppe). Master-Fliegen wurden immer dann geschockt, wenn sie für länger als 0,9 Sekunden saßen. Unabhängig ihres Verhaltens erhielten die Yoked-Fliegen zeitgleich einen Schock um einen zufälligen Bestrafungsreiz zu generieren. Mit diesem so genannten ‚no-idleness‘ (nicht ruhen dürfen) Paradigma wurden die Fliegen entweder zehn Minuten oder 20 Minuten konditioniert. Während eine zehnminütige Konditionierung zu einem kurzen Nacheffekt führte (Nacheffekt von drei Minuten), stellte sich die zwanzigminütige Konditionierung als nachhaltiger heraus (Nacheffekt von zehn Minuten). In einem zweiten Teil der Arbeit wurde das Verhalten der Fliegen sowohl während der zwanzig Minuten andauernden Konditionierung also auch im nachfolgenden zehnminütigen Test im Detail beschrieben. Während der zwanzigminütigen Konditionierung zeigten weibliche Yoked-Fliegen eine geringere Aktivität, saßen länger und liefen langsamer als Master- oder Kontroll-Fliegen. In der Zeit nach den Schocks, zeigten sie immer noch eine verminderte Lauffrequenz sowie kürzere und langsamere Laufphasen. Zusätzlich benötigten sie länger um nach dem Einsetzten eines Elektroschocks loszulaufen (Flucht-Latenzzeit) und machten weniger Kurzpausen die zwischen 1 bis 1,5 Sekunden lang waren. Dies unterstützt das Ergebnis der verlängerten Flucht-Latenzzeit. Männchen, die unter gleichen Bedingungen getestet wurden, wiesen im Vergleich zu weiblichen Fliegen eine leicht abgeschwächte Reaktion bezüglich des Master-Yoked-Unterschieds auf. Wenn die Konditionierung mit dem anschließenden Test in der Schock- und der Hitzekammer gleichzeitig durchgeführt wurde, resultierte dies in vergleichbaren Ergebnissen: Fliegen, die keine Kontrolle über den Reiz haben, vermindern ihr Aktivitätslevel, sitzen seltener aber länger und laufen langsamer als die dazugehörigen Master-Fliegen. Neben der Tatsache, dass ein ähnlicher Effekt auftritt, weisen die Apparaturen dennoch kleine Unterschiede auf. Diese können zu Teilen mit den unterschiedlichen Luftfeuchtigkeitsniveaus als auch durch die Verschiedenheit der Laufoberfläche der jeweiligen Kammern erklärt werden. Wird den Fliegen die Kontrolle über die Schocks zurückgegeben, benötigen sie etwa sieben Minuten um dies zu erkennen. Zudem konnte gezeigt werden, dass die Dopaminkonzentration in den Köpfen, im Vergleich zu Tieren die keine Schocks erhalten haben, vermindert war. Yoked-Fliegen wiesen außerdem unmittelbar nach der Konditionierung Defekte im Ortslernen und in ihrer positiven Reaktion auf Licht auf. Nachdem das Laufverhalten innerhalb der Kammern ausführlich charakterisiert wurde, geht diese Studie darauf ein, ob die Effekte, die in den Kammern gemessen wurden, auch in anderen Umgebungen zu beobachten sind. Im freien Lauf unterschieden sie sich lediglich von Fliegen, die keine Schocks erhalten hatten und es sind keine Auswirkungen durch Kontrollverlust im Paarungsverhalten festzustellen. Da die Handhabung der Tiere als Grund für den Verlust des Nacheffektes ausgeschlossen werden konnte, lässt sich schlussfolgern, dass das Verhalten das in den Kammern gemessen wurde, kontextabhängig ist. Zusätzlich zur Untersuchung der Auswirkungen unausweichlichen Stresses, wurde der Einfluss, der Aufzuchtbedingungen auf die Stress-Antwort in der vorliegenden Studie untersucht. Fliegen, die einzeln aufgezogen wurden, weisen bei beiden Geschlechtern eine verminderte Antwort auf Stress auf. Im darauffolgenden Abschnitt wurden erste Schritte unternommen, um die neuronalen Grundlagen der Erlernten Hilflosigkeit zu untersuchen. Eine Mutante – fumin – die ein defektes Wiederaufnahmetransporter-Gen für Dopamin besitzt, wies eine verminderte Stressantwort auf. Während eine Mutante des Adenylatzyklasegens (rutabaga2080) normale Ergebnisse während der Konditionierung aufzeigten, war im Post-test kein signifikanter Nacheffekt messbar. Das Herunterregulieren des Adenylatcyclasengens (rutabaga), in verschiedenen Teilen der Pilzkörper, zeigte dass die Expression von rutabaga in den α’β’-Loben für die Entwicklung der Erlernten Hilflosigkeit im no-idleness Paradigma benötigt wird. Zudem konnten vorangegangene Studien bestätigt werden, die rutabaga eine Rolle im operanten Lernen jedoch nicht im klassischen Lernen zuordnen. Als Fazit zeigt die Studie, dass nicht der Stressor selbst, sondern die Unkontrollierbarkeit des Stressors der Grund für die Entwicklung der Erlernten Hilflosigkeit darstellt und das Phänomen, innerhalb der hier gewählten Zeitspanne (20 Minuten Stress), kontextabhängig zu sein scheint. KW - Taufliege KW - Stress KW - Verhalten KW - Gelernte Hilflosigkeit KW - Erlernte Hilflosigkeit KW - Learned Helplessness KW - Behavior KW - Drosophila melanogaster Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145416 ER - TY - THES A1 - Herter, Eva Kristine T1 - Characterization of direct Myc target genes in Drosophila melanogaster and Investigating the interaction of Chinmo and Myc T1 - Charakterisierung direkter Myc Zielgene in Drosophila melanogaster und Interaktionsanalyse der Proteine Chinmo und Myc N2 - The correct regulation of cell growth and proliferation is essential during normal animal development. Myc proteins function as transcription factors, being involved in the con-trol of many growth- and proliferation-associated genes and deregulation of Myc is one of the main driving factors of human malignancies. The first part of this thesis focuses on the identification of directly regulated Myc target genes in Drosophila melanogaster, by combining ChIPseq and RNAseq approaches. The analysis results in a core set of Myc target genes of less than 300 genes which are mainly involved in ribosome biogenesis. Among these genes we identify a novel class of Myc targets, the non-coding small nucleolar RNAs (snoRNAs). In vivo studies show that loss of snoRNAs not only impairs growth during normal development, but that overexpression of several snoRNAs can also enhance tumor development in a neu-ronal tumor model. Together the data show that Myc acts as a master regulator of ribo-some biogenesis and that Myc’s transforming effects in tumor development are at least partially mediated by the snoRNAs. In the second part of the thesis, the interaction of Myc and the Zf-protein Chinmo is described. Co-immunoprecipitations of the two proteins performed under endogenous and exogenous conditions show that they interact physically and that neither the two Zf-domains nor the BTB/POZ-domain of Chinmo are important for this interaction. Fur-thermore ChIP experiments and Myc dependent luciferase assays show that Chinmo and Myc share common target genes, and that Chinmo is presumably also involved in their regulation. While the exact way of how Myc and Chinmo genetically interact with each other still has to be investigated, we show that their interaction is important in a tumor model. Overexpression of the tumor-suppressors Ras and Chinmo leads to tu-mor formation in Drosophila larvae, which is drastically impaired upon loss of Myc. N2 - Die korrekte Regulation von Zellwachstum und Proliferation ist von entscheidender Bedeutung für die Entwicklung von Tieren. Myc-Proteine fungieren als Transkriptions-faktoren, die in die Funktionskontrolle vieler Gene eingebunden sind die eine Rolle bei Zellwachstum und Proliferation spielen. Fehlregulierung von Myc ist ein Hauptfaktor menschlicher Tumorbildung. Der erste Teil dieser Dissertation beschäftigt sich mit der Identifizierung direkt regulierter Myc Zielgene in Drosophila melanogaster durch Kombination von ChIPseq und RNAseq Analysen. Insgesamt wurde eine Hauptgruppe von weniger als 300 Myc Ziel-genen identifiziert, von denen der Großteil eine Funktion in der Ribosomen Biogenese hat. Unter diesen Genen haben wir eine neue Klasse an Myc Zielgenen identifiziert, die nicht-codierenden „small nucleolar RNAs“ (snoRNAs). In vivo Experimente zeigen, dass der Verlust der snoRNAs nicht nur das Wachstum während der natürlichen Ent-wicklung beeinträchtigt, sondern auch, dass Überexpression verschiedener snoRNAs die Tumorbildung in einem neuronalen Tumormodel begünstigt. Zusammenfassend zeigen die Daten, dass Myc maßgeblich Ribosomen Biogenese steuert und dass der transformierende Effekt, den Myc in der Tumorentwicklung inne hat, zumindest teilwei-se durch die snoRNAs gesteuert wird. Im zweiten Teil der Arbeit wird die Interaktion von Myc und dem Zink-Finger Protein Chinmo beschrieben. Co-Immunoprezipitationen der zwei Proteine die unter endogenen und exogenen Bedingungen durchgeführt wurden zeigen, dass sie physisch miteinander interagieren und dass weder Chinmos Zf-Domänen noch seine BTB/POZ-Domäne für diese Interaktion verantwortlich sind. ChIP-Versuche und Myc abhängige Luciferase-Assays zeigen weiterhin, dass Chinmo und Myc gemeinsame Zielgene besitzen und dass Chinmo darüber hinaus wahrscheinlich auch an ihrer Regulation beteiligt ist. Während der genaue Zusammenhang der genetischen Interaktionen von Myc und Chinmo noch ungewiss ist und weiterer Untersuchungen bedarf, kann gezeigt werden, dass die Interaktion der beiden Proteine in einem Tumormodel eine Rolle spielt. Die Tumorbildung die durch Überexpression des Tumorsuppressors Ras zusammen mit Chinmo hervorgerufen wird, wird durch den Verlust von Myc stark reduziert. KW - Myc KW - Drosophila melanogaster KW - Transcription KW - snoRNA KW - Ribosome KW - Growth KW - Taufliege KW - Transkription Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122272 ER - TY - THES A1 - Dusik, Verena T1 - Immunhistochemische und funktionelle Charakterisierung der Mitogen-aktivierten Proteinkinase p38 in der inneren Uhr von Drosophila melanogaster T1 - Immunhistochemical and functional characterisation of the mitogen-activated protein kinase p38 in the endogenous clock of Drosophila melanogaster N2 - Circadianes und Stress-System sind zwei physiologische Systeme, die dem Organismus helfen sich an Veränderungen ihrer Umwelt anzupassen. Während letzteres spontane und schnelle Antworten auf akute, unvorhersehbare Umweltreize liefert, sagt das circadiane System täglich wiederkehrende Ereignisse vorher and bereitet den Organismus so vorzeitig auf diese nahende Umweltveränderung vor. Dennoch, trotz dieser unterschiedlichen Reaktionsmechanismen agieren beide Systeme nicht komplett autonom. Studien der vergangen Jahre belegen vielmehr eine Interaktion beider Systeme. So postulieren sie zum einem Unterschiede in der Stressantwort in Abhängigkeit von der Tageszeit zu der der Reiz auftritt und weisen zugleich auf eine Zunahme von gestörten biologischen Tagesrhythmen, wie zum Beispiel Schlafstörungen, in Folge von unkontrollierten oder exzessiven Stress hin. Ebenso liefern kürzlich durchgeführte Studien an Vertebraten und Pilzen Hinweise, dass mit p38, eine Stress-aktivierte Kinase, an der Signalweiterleitung zur inneren Uhr beteiligt ist (Hayashi et al., 2003), sogar durch dieses endogene Zeitmesssystem reguliert wird (Vitalini et al., 2007; Lamb et al., 2011) und deuten damit erstmals eine mögliche Verbindung zwischen Stress-induzierten und regulären rhythmischen Anpassungen des Organismus an Umweltveränderungen an. Molekulare und zelluläre Mechanismen dieser Verknüpfung sind bisher noch nicht bekannt. Während die Rolle von p38 MAPK bei der Stress- und Immunantwort in Drosophila melanogaster gut charakterisiert ist, wurden Expression und Funktion von p38 in der inneren Uhr hingegen bislang nicht untersucht. Die hier vorliegende Arbeit hatte daher zum Ziel mittels immunhistochemischer, verhaltensphysiologischer und molekularer Methoden eine mögliche Rolle der Stress-aktivierten Kinase im circadianen System der Fliege aufzudecken. Antikörperfärbungen sowie Studien mit Reporterlinien zeigen deutliche Färbesignale in den s-LNv, l-LNv und DN1a und erbringen erstmals einen Nachweis für p38 Expression in den Uhrneuronen der Fliege. Ebenso scheint die Aktivität von p38 MAPK in den DN1a uhrgesteuert zu sein. So liegt p38 vermehrt in seiner aktiven Form in der Dunkelphase vor und zeigt, neben seiner circadian regulierten Aktivierung, zusätzlich auch eine Inaktivierung durch Licht. 15-Minuten-Lichtpulse in der subjektiven Nacht führen zu einer signifikanten Reduktion von aktivierter, phosphorylierter p38 MAPK in den DN1a von Canton S Wildtypfliegen im Vergleich zu Fliegen ohne Lichtpuls-Behandlung. Aufzeichnungen der Lokomotoraktivität offenbaren zusätzlich die Notwendigkeit von p38 MAPK für wildtypisches Timing der Abendaktivität sowie zum Erhalt von 24-Stunden-Verhaltensrhythmen unter konstanten Dauerdunkel-Bedindungen. So zeigen Fliegen mit reduzierten p38 Level in Uhrneuronen einen verzögerten Beginn der Abendaktivität und stark verlängerte Freilaufperioden. In Übereinstimmung mit Effekten auf das Laufverhalten scheint darüber hinaus die Expression einer dominant-negativen Form von p38b in Drosophila’s wichtigsten Uhrneuronen eine verspätete nukleäre Translokation von Period zur Folge zu haben. Westernblots legen zusätzlich einen Einfluss von p38 auf den Phosphorylierungsgrad von Period nahe und liefern damit einen mögliche Erklärung für den verspäteten Kerneintritt des Uhrproteins. Abschließende Stützung der Westernblotergebnisse bringen in vitro Kinasenassays und deuten auf p38 als eine potentielle „Uhrkinase“ hin, welche auch in vivo Period an Serin 661 sowie weiteren potentiellen Phosphorylierungsstellen phosphorylieren könnte. Zusammengenommen deuten die Ergebnisse der hier vorliegenden Arbeit eindeutig auf eine bedeutende Rolle von p38, neben dessen Funkion im Stress-System, auch im circadianen System der Fliege hin und offenbaren damit die Möglichkeit, dass p38 als Schnittstelle zwischen beider Systeme fungiert. N2 - The circadian and the stress system are two distinct physiological systems that help the organism to adapt to environmental challenges. While the latter elicits reactive responses to acute environmental changes, the circadian system predicts daily occurring alterations and prepares the organism in advance. However, despite of these differences both responses are not mutually exclusive. Studies in the last years obviously prove a strong interaction between both systems showing a strong time-related stress response depending on the time of day of stressor presentation on the one hand and increased disturbances of daily rhythms, like sleep disorders, in consequence of uncontrolled or excessive stress on the other. In line with this fact, recent studies in vertebrates and fungi indicate that p38, a stress-activated Kinase, is involved in signaling to the circadian clock (Hayashi et al., 2003) and in turn is additionally regulated by this timekeeping system (Vitalini et al., 2007; Lamb et al., 2011) providing an interesting link between stress-induced and regularly rhythmic adaptations of the organism to environmental changes. However, little is known about molecular and cellular mechanisms of this interconnection. In Drosophila melanogaster the role of p38 MAPK is well characterized in terms of immune and stress response, p38 expression and function in the circadian clock has not been reported so far. Therefore, the present thesis aimed to elucidate a putative role of the stress-activated Kinase in the fly’s circadian system using an immunohistochemical, behavioral as well as molecular approach. Surprisingly, for the first time antibody as well as reporterline studies cleary prove p38 expression in Drosophila clock neurons showing visible staining in s-LNvs, l-LNvs and DN1as. Moreover p38 MAPK in DN1as seems to be activated in a clock-dependent manner. p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. 15 minutes light pulse applied during the dark phase lead to a significant reduction in phosphorylated and activated p38 MAPK in Canton S wildtype flies compared to flies without light pulse treatment. In addition, locomotor activity recordings reveal that p38 is essential for a wild-type timing of evening activity and for maintaining ~24h behavioral rhythms under constant darkness. Flies with reduced p38 activity in clock neurons show delayed evening activity onsets and drastically lengthened the period of their free-running rhythms. In line with these effects on locomotor behavior, the nuclear translocation of the clock protein Period is significantly delayed on the expression of a dominant-negative form of p38b in Drosophila’s most important clock neurons. Western Blots reveal that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays additionally confirm the Western Blot results and point to p38 as a potential “clock kinase” phosphorylating Period at Serin 661 and putative phosphorylation sites. Taken together, the results of the present thesis clearly indicate a prominent role of p38 in the circadian system of the fly besides its function in stress-input pathways und open up the possibility of p38 MAPK being a nodal point of both physiological systems. KW - Taufliege KW - Biologische Uhr KW - MAP-Kinase KW - Innere Uhr KW - MAPK KW - p38 KW - Phosphorylierung KW - Mitogen-aktivierte Proteinkinase KW - Drosophila melanogaster KW - Circadiane Rhythmen KW - Drosophila Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124636 ER - TY - THES A1 - Gmeiner, Florian T1 - Der Einfluss der Neurotransmitter Dopamin, Serotonin und GABA sowie ihrer Transporter auf das Schlafverhalten von Drosophila melanogaster T1 - The influence of the neurotransmitters dopamine, serotonin and GABA as well as its transporters on the sleep behaviour of drosophila melanogaster N2 - In der vorliegenden Arbeit wurde der Einfluss von Dopamin, Serotonin und GABA auf das Schlafverhalten von Drosophila melanogaster genauer untersucht. Mit Hilfe von Mutanten in Wiederaufnahmetransportern für Dopamin und Serotonin konnte gezeigt werden, dass Dopamin und Serotonin entgegengesetzte Wirkungen auf die Schlafmenge der Fliegen haben. Dopamin hat eine schlafhemmende, Serotonin eine schlaffördernde Wirkung. Die Nutzung eines neuronal dopamindefizienten Fliegenstammes erweitert diese Erkenntnisse. Die Nutzung von RNAi zur Hinunterregulierung der Rezeptoren für Dopamin brachte keine weiteren Erkenntnisse, da sie zu keinem messbaren Effekt führen. Jedoch ergab eine parallel dazu durchgeführte Hinunterregulierung des GABABR2 Rezeptors, dass dieser maßgeblich für die Aufrechterhaltung des Schlafes in der zweiten Hälfte der Nacht verantwortlich ist. Es konnte gezeigt werden, dass für diese Aufgabe vor allem ihre Expression in den l-LNv Neuronen relevant ist. Dabei ist für die GABABR2 Rezeptoren kein Effekt, für Dopamin und Serotonin nur in geringen Ausmaß ein Effekt auf die Innere Uhr in Form von gering veränderter Periode zu beobachten. Durch eine Kombination der Transportermutanten für Dopamin und Serotonin mit dem intakten, als auch mutierten WHITE Transporter zeigte sich eine interessante Interaktion dieser drei Transporter bei der Regulation der Gesamtschlafmenge, wobei die white Mutation zu einer Reduzierung der Gesamtschlafmenge führt. UPLC Messungen der Stämme ergaben, dass der Effekt von white vermutlich auf dessen Einfluss auf den beta-Alanyldopamingehalt der Fliegen basiert. beta-Alanyldopamin wird bei dem Transport von Dopamin über die Gliazellen durch das Enzym EBONY gebildet, dessen Mutation in der Kombination mit intaktem WHITE und mutiertem Dopamintransporter zu einer drastischen Reduktion des Schlafes während der Nacht führt. Im Rahmen der Untersuchung konnte zudem gezeigt werden, dass entgegen des bisherigen Wissens aus Zellkulturstudien in Drosophila melanogaster kein beta-Alanylserotonin gebildet wird. Möglicherweise wird nur Dopamin, nicht jedoch Serotonin über die Gliazellen recycelt. Dies ist ein interessanter Unterschied, der sowohl eine zeitliche, als auch lokale Feinregulation der Gegenspieler Dopamin und Serotonin ermöglicht. Die Untersuchung der Dimerpartner BROWN und SCARLET zeigte, dass lediglich BROWN zu einer Reduktion des Schlafes führt. Ein Effekt, der auch in einer Fliegenlinie mit spontaner white Mutation beobachtet werden konnte. Die genaue Funktion dieses Heterodimertransporters und seine neuronale Lokalisation wurden im Rahmen dieser Arbeit noch nicht geklärt. Dennoch liegt eine Funktion als Dopamin- oder beta-Alanyldopamintransporter in Gliazellen auf Grund der ermittelten Ergebnisse nahe. Zusätzlich konnte zum ersten Mal in Drosophila melanogaster eine Funktion der Amintransporter bei der Anpassung der Inneren Uhr an extreme kurze bzw. lange Photoperioden gezeigt werden. Eine anatomische Lokalisierung des WHITE Transporters im Gehirn von Drosophila melanogaster, die weitere Charakterisierung der Rolle des WHITE/BROWN Dimers und die Zuordnung bestimmter dopaminerger und serotonerger Neurone bei der Modulation der Aktivitätsmaxima stellen spannende Fragen für zukünftige Arbeiten dar. N2 - The main focus in the present work, was the observation of the influence of dopamine, serotonin and GABA on the sleep behaviour of Drosophila melanogaster. By utilizing mutants for the dopamine transporter as well as the serotonin transporter, it was possible to show, that dopamine and serotonin have opposing effects on the total sleep amount of flies. Dopamine has a sleep inhibiting, serotonin a sleep promoting function. A neuronal dopamine deficient stock complemented those findings. Usage of RNAi to downregulate dopamine receptors did not enhance the information, since no measurable effect could be detected. But in parallel performed experiments with RNAi mediated knockdown of GABABR2 receptors could show its role in the maintenance of sleep during the second half of the night. I could show that especially the expression in the l-LNv is needed for that. In case of the GABABR2 receptors no effect on the period was observed, for dopamine and serotonin only a minor effect on the clock in form of a mild period change accompanied those drastic sleep phenotypes. Combining the amine transporter mutants with functional as well as mutated white led to some interesting observations regarding the interaction of those transporters in regulating total sleep, in which white reduces the total sleep amount. Following up those experiments with UPLC measurements, it was shown that presumably WHITE causes its effect due to its relevance for the amount of beta-alanyldopamine in adult flies. When dopamine is transported into the glia cells, beta-alanyldopamine is synthesized by the enzyme EBONY. The ebony mutant revealed a drastic sleep phenotype when combined with an intact WHITE transporter and a mutated dopamine transporter. This leads to a dramatic decrease of sleep during the night phase. When doing the UPLC measurements it was furthermore revealed, that unexpectedly regarding the knowledge from cell culture experiments, beta-alanylserotonin cannot be detected. Presumably, only dopamine, but not serotonin is recycled by the glia cells. This interesting difference gives space for a temporal as well as for a local fine regulation of the dopamine and serotonin signals. Investigating the dimer partners of WHITE, BROWN and SCARLET, I found that BROWN just as a spontaneous white mutation that I observed, led to a decrease of total sleep. The function of this heterodimer and its neuronal localisation in the brain remains unknown. Regarding the data presented in this work, it is likely that this dimer transports either dopamine or beta-alanyldopamine in glia cells. Furthermore, I could observe that dopamine and serotonin change the ability of the circadian clock to adapt to different photoperiods, a so far unstudied phenotype. 96 An anatomical approach to localize the WHITE transporter in the brain of Drosophila melanogaster and a further characterization of the function of the WHITE/BROWN dimer, with regard to sleep and eventually the mapping of serotonergic and dopaminergic neurons, which modulate the activity peak responses, are questions for future work. KW - Taufliege KW - Drosophila melanogaster KW - Schlaf KW - Dopamin KW - Serotonin KW - GABA KW - Drosophila melanogaster KW - sleep KW - dopamine KW - serotonin KW - GABA KW - Schlaf KW - Dopamin KW - Serotonin KW - Aminobuttersäure Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-99152 ER -