TY - JOUR A1 - Sommer, Kim K. A1 - Amr, Ali A1 - Bavendiek, Udo A1 - Beierle, Felix A1 - Brunecker, Peter A1 - Dathe, Henning A1 - Eils, Jürgen A1 - Ertl, Maximilian A1 - Fette, Georg A1 - Gietzelt, Matthias A1 - Heidecker, Bettina A1 - Hellenkamp, Kristian A1 - Heuschmann, Peter A1 - Hoos, Jennifer D. E. A1 - Kesztyüs, Tibor A1 - Kerwagen, Fabian A1 - Kindermann, Aljoscha A1 - Krefting, Dagmar A1 - Landmesser, Ulf A1 - Marschollek, Michael A1 - Meder, Benjamin A1 - Merzweiler, Angela A1 - Prasser, Fabian A1 - Pryss, Rüdiger A1 - Richter, Jendrik A1 - Schneider, Philipp A1 - Störk, Stefan A1 - Dieterich, Christoph T1 - Structured, harmonized, and interoperable integration of clinical routine data to compute heart failure risk scores JF - Life N2 - Risk prediction in patients with heart failure (HF) is essential to improve the tailoring of preventive, diagnostic, and therapeutic strategies for the individual patient, and effectively use health care resources. Risk scores derived from controlled clinical studies can be used to calculate the risk of mortality and HF hospitalizations. However, these scores are poorly implemented into routine care, predominantly because their calculation requires considerable efforts in practice and necessary data often are not available in an interoperable format. In this work, we demonstrate the feasibility of a multi-site solution to derive and calculate two exemplary HF scores from clinical routine data (MAGGIC score with six continuous and eight categorical variables; Barcelona Bio-HF score with five continuous and six categorical variables). Within HiGHmed, a German Medical Informatics Initiative consortium, we implemented an interoperable solution, collecting a harmonized HF-phenotypic core data set (CDS) within the openEHR framework. Our approach minimizes the need for manual data entry by automatically retrieving data from primary systems. We show, across five participating medical centers, that the implemented structures to execute dedicated data queries, followed by harmonized data processing and score calculation, work well in practice. In summary, we demonstrated the feasibility of clinical routine data usage across multiple partner sites to compute HF risk scores. This solution can be extended to a large spectrum of applications in clinical care. KW - medical informatics initiative KW - HiGHmed KW - medical data integration center KW - clinical routine data KW - heart failure KW - risk prediction scores KW - semantic interoperability KW - openEHR Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275239 SN - 2075-1729 VL - 12 IS - 5 ER -