TY - JOUR A1 - Fathy, Moustafa A1 - Fawzy, Michael Atef A1 - Hintzsche, Henning A1 - Nikaido, Toshio A1 - Dandekar, Thomas A1 - Othman, Eman M. T1 - Eugenol exerts apoptotic effect and modulates the sensitivity of HeLa cells to cisplatin and radiation JF - Molecules N2 - Eugenol is a phytochemical present in different plant products, e.g., clove oil. Traditionally, it is used against a number of different disorders and it was suggested to have anticancer activity. In this study, the activity of eugenol was evaluated in a human cervical cancer (HeLa) cell line and cell proliferation was examined after treatment with various concentrations of eugenol and different treatment durations. Cytotoxicity was tested using lactate dehydrogenase (LDH) enzyme leakage. In order to assess eugenol’s potential to act synergistically with chemotherapy and radiotherapy, cell survival was calculated after eugenol treatment in combination with cisplatin and X-rays. To elucidate its mechanism of action, caspase-3 activity was analyzed and the expression of various genes and proteins was checked by RT-PCR and western blot analyses. Eugenol clearly decreased the proliferation rate and increased LDH release in a concentration- and time-dependent manner. It showed synergistic effects with cisplatin and X-rays. Eugenol increased caspase-3 activity and the expression of Bax, cytochrome c (Cyt-c), caspase-3, and caspase-9 and decreased the expression of B-cell lymphoma (Bcl)-2, cyclooxygenase-2 (Cox-2), and interleukin-1 beta (IL-1β) indicating that eugenol mainly induced cell death by apoptosis. In conclusion, eugenol showed antiproliferative and cytotoxic effects via apoptosis and also synergism with cisplatin and ionizing radiation in the human cervical cancer cell line. KW - eugenol KW - HeLa cells KW - cisplatin KW - radiation KW - apoptosis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193227 SN - 1420-3049 VL - 24 IS - 21 ER - TY - JOUR A1 - Prada, Juan Pablo A1 - Maag, Luca Estelle A1 - Siegmund, Laura A1 - Bencurova, Elena A1 - Liang, Chunguang A1 - Koutsilieri, Eleni A1 - Dandekar, Thomas A1 - Scheller, Carsten T1 - Estimation of R0 for the spread of SARS-CoV-2 in Germany from excess mortality JF - Scientific Reports N2 - For SARS-CoV-2, R0 calculations in the range of 2–3 dominate the literature, but much higher estimates have also been published. Because capacity for RT-PCR testing increased greatly in the early phase of the Covid-19 pandemic, R0 determinations based on these incidence values are subject to strong bias. We propose to use Covid-19-induced excess mortality to determine R0 regardless of RT-PCR testing capacity. We used data from the Robert Koch Institute (RKI) on the incidence of Covid cases, Covid-related deaths, number of RT-PCR tests performed, and excess mortality calculated from data from the Federal Statistical Office in Germany. We determined R0 using exponential growth estimates with a serial interval of 4.7 days. We used only datasets that were not yet under the influence of policy measures (e.g., lockdowns or school closures). The uncorrected R0 value for the spread of SARS-CoV-2 based on RT-PCR incidence data was 2.56 (95% CI 2.52–2.60) for Covid-19 cases and 2.03 (95% CI 1.96–2.10) for Covid-19-related deaths. However, because the number of RT-PCR tests increased by a growth factor of 1.381 during the same period, these R0 values must be corrected accordingly (R0corrected = R0uncorrected/1.381), yielding 1.86 for Covid-19 cases and 1.47 for Covid-19 deaths. The R0 value based on excess deaths was calculated to be 1.34 (95% CI 1.32–1.37). A sine-function-based adjustment for seasonal effects of 40% corresponds to a maximum value of R0January = 1.68 and a minimum value of R0July = 1.01. Our calculations show an R0 that is much lower than previously thought. This relatively low range of R0 fits very well with the observed seasonal pattern of infection across Europe in 2020 and 2021, including the emergence of more contagious escape variants such as delta or omicron. In general, our study shows that excess mortality can be used as a reliable surrogate to determine the R0 in pandemic situations. KW - SARS-CoV-2 KW - R0 KW - mortality Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301415 VL - 12 IS - 1 ER - TY - JOUR A1 - Peindl, Matthias A1 - Göttlich, Claudia A1 - Crouch, Samantha A1 - Hoff, Niklas A1 - Lüttgens, Tamara A1 - Schmitt, Franziska A1 - Pereira, Jesús Guillermo Nieves A1 - May, Celina A1 - Schliermann, Anna A1 - Kronenthaler, Corinna A1 - Cheufou, Danjouma A1 - Reu-Hofer, Simone A1 - Rosenwald, Andreas A1 - Weigl, Elena A1 - Walles, Thorsten A1 - Schüler, Julia A1 - Dandekar, Thomas A1 - Nietzer, Sarah A1 - Dandekar, Gudrun T1 - EMT, stemness, and drug resistance in biological context: a 3D tumor tissue/in silico platform for analysis of combinatorial treatment in NSCLC with aggressive KRAS-biomarker signatures JF - Cancers N2 - Epithelial-to-mesenchymal transition (EMT) is discussed to be centrally involved in invasion, stemness, and drug resistance. Experimental models to evaluate this process in its biological complexity are limited. To shed light on EMT impact and test drug response more reliably, we use a lung tumor test system based on a decellularized intestinal matrix showing more in vivo-like proliferation levels and enhanced expression of clinical markers and carcinogenesis-related genes. In our models, we found evidence for a correlation of EMT with drug resistance in primary and secondary resistant cells harboring KRAS\(^{G12C}\) or EGFR mutations, which was simulated in silico based on an optimized signaling network topology. Notably, drug resistance did not correlate with EMT status in KRAS-mutated patient-derived xenograft (PDX) cell lines, and drug efficacy was not affected by EMT induction via TGF-β. To investigate further determinants of drug response, we tested several drugs in combination with a KRAS\(^{G12C}\) inhibitor in KRAS\(^{G12C}\) mutant HCC44 models, which, besides EMT, display mutations in P53, LKB1, KEAP1, and high c-MYC expression. We identified an aurora-kinase A (AURKA) inhibitor as the most promising candidate. In our network, AURKA is a centrally linked hub to EMT, proliferation, apoptosis, LKB1, and c-MYC. This exemplifies our systemic analysis approach for clinical translation of biomarker signatures. KW - EMT KW - drug resistance KW - invasion KW - stemness KW - 3D lung tumor tissue models KW - KRAS biomarker signatures KW - boolean in silico models KW - targeted combination therapy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270744 SN - 2072-6694 VL - 14 IS - 9 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Argos, P. T1 - Drug assay using antibody mimics made by molecular imprinting N2 - No abstract available Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30003 ER - TY - JOUR A1 - Wolf, Beat A1 - Kuonen, Pierre A1 - Dandekar, Thomas A1 - Atlan, David T1 - DNAseq workflow in a diagnostic context and an example of a user friendly implementation JF - BioMed Research International N2 - Over recent years next generation sequencing (NGS) technologies evolved from costly tools used by very few, to a much more accessible and economically viable technology. Through this recently gained popularity, its use-cases expanded from research environments into clinical settings. But the technical know-how and infrastructure required to analyze the data remain an obstacle for a wider adoption of this technology, especially in smaller laboratories. We present GensearchNGS, a commercial DNAseq software suite distributed by Phenosystems SA. The focus of GensearchNGS is the optimal usage of already existing infrastructure, while keeping its use simple. This is achieved through the integration of existing tools in a comprehensive software environment, as well as custom algorithms developed with the restrictions of limited infrastructures in mind. This includes the possibility to connect multiple computers to speed up computing intensive parts of the analysis such as sequence alignments. We present a typical DNAseq workflow for NGS data analysis and the approach GensearchNGS takes to implement it. The presented workflow goes from raw data quality control to the final variant report. This includes features such as gene panels and the integration of online databases, like Ensembl for annotations or Cafe Variome for variant sharing. KW - next generation sequencing KW - genome browser KW - mutation KW - algorithm KW - database KW - format KW - discovery KW - exome KW - variants KW - alignment Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144527 IS - 403497 ER - TY - JOUR A1 - Bencurova, Elena A1 - Akash, Aman A1 - Dobson, Renwick C.J. A1 - Dandekar, Thomas T1 - DNA storage-from natural biology to synthetic biology JF - Computational and Structural Biotechnology Journal N2 - Natural DNA storage allows cellular differentiation, evolution, the growth of our children and controls all our ecosystems. Here, we discuss the fundamental aspects of DNA storage and recent advances in this field, with special emphasis on natural processes and solutions that can be exploited. We point out new ways of efficient DNA and nucleotide storage that are inspired by nature. Within a few years DNA-based information storage may become an attractive and natural complementation to current electronic data storage systems. We discuss rapid and directed access (e.g. DNA elements such as promotors, enhancers), regulatory signals and modulation (e.g. lncRNA) as well as integrated high-density storage and processing modules (e.g. chromosomal territories). There is pragmatic DNA storage for use in biotechnology and human genetics. We examine DNA storage as an approach for synthetic biology (e.g. light-controlled nucleotide processing enzymes). The natural polymers of DNA and RNA offer much for direct storage operations (read-in, read-out, access control). The inbuilt parallelism (many molecules at many places working at the same time) is important for fast processing of information. Using biology concepts from chromosomal storage, nucleic acid processing as well as polymer material sciences such as electronical effects in enzymes, graphene, nanocellulose up to DNA macramé , DNA wires and DNA-based aptamer field effect transistors will open up new applications gradually replacing classical information storage methods in ever more areas over time (decades). KW - DNA KW - RNA KW - data storage KW - natural processing KW - synthetic biology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349971 SN - 2001-0370 VL - 21 ER - TY - JOUR A1 - Krueger, Beate A1 - Friedrich, Torben A1 - Förster, Frank A1 - Bernhardt, Jörg A1 - Gross, Roy A1 - Dandekar, Thomas T1 - Different evolutionary modifications as a guide to rewire two-component systems JF - Bioinformatics and Biology Insights N2 - Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases. KW - histidine kinase KW - connector KW - Mycoplasma KW - engineering KW - promoter KW - sensor KW - response regulator KW - synthetic biology KW - sequence alignment Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123647 N1 - This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited. VL - 6 ER - TY - JOUR A1 - Othman, Eman M. A1 - Bekhit, Amany A. A1 - Anany, Mohamed A. A1 - Dandekar, Thomas A1 - Ragab, Hanan M. A1 - Wahid, Ahmed T1 - Design, Synthesis, and Anticancer Screening for Repurposed Pyrazolo[3,4-d]pyrimidine Derivatives on Four Mammalian Cancer Cell Lines JF - Molecules N2 - The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells. KW - pyrazolo[3,4-d]pyrimidine KW - anticancer activity KW - apoptosis KW - Ki67 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239734 SN - 1420-3049 VL - 26 IS - 10 ER - TY - JOUR A1 - Argos, P. A1 - Dandekar, Thomas T1 - Delineating the main chain topology of four-helix bundle proteins using the genetic algorithm and knowledge based on the amino acid sequence alone N2 - No abstract available KW - Proteine KW - Strukturanalyse KW - Abstandsmessung Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-33807 ER - TY - JOUR A1 - Fathy, Moustafa A1 - Saad Eldin, Sahar M. A1 - Naseem, Muhammad A1 - Dandekar, Thomas A1 - Othman, Eman M. T1 - Cytokinins: wide-spread signaling hormones from plants to humans with high medical potential JF - Nutrients N2 - Nature is a rich source of biologically active novel compounds. Sixty years ago, the plant hormones cytokinins were first discovered. These play a major role in cell division and cell differentiation. They affect organogenesis in plant tissue cultures and contribute to many other physiological and developmental processes in plants. Consequently, the effect of cytokinins on mammalian cells has caught the attention of researchers. Many reports on the contribution and potential of cytokinins in the therapy of different human diseases and pathophysiological conditions have been published and are reviewed here. We compare cytokinin effects and pathways in plants and mammalian systems and highlight the most important biological activities. We present the strong profile of the biological actions of cytokinins and their possible therapeutic applications. KW - cytokinins KW - phytohormones KW - biological activities KW - plant system KW - mammalian system Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271017 SN - 2072-6643 VL - 14 IS - 7 ER -