TY - JOUR A1 - Ye, Mingyu A1 - Keicher, Markus A1 - Gentschev, Ivaylo A1 - Szalay, Aladar A. T1 - Efficient selection of recombinant fluorescent vaccinia virus strains and rapid virus titer determination by using a multi-well plate imaging system JF - Biomedicines N2 - Engineered vaccinia virus (VACV) strains are used extensively as vectors for the development of novel cancer vaccines and cancer therapeutics. In this study, we describe for the first time a high-throughput approach for both fluorescent rVACV generation and rapid viral titer measurement with the multi-well plate imaging system, IncuCyte\(^®\)S3. The isolation of a single, well-defined plaque is critical for the generation of novel recombinant vaccinia virus (rVACV) strains. Unfortunately, current methods of rVACV engineering via plaque isolation are time-consuming and laborious. Here, we present a modified fluorescent viral plaque screening and selection strategy that allows one to generally obtain novel fluorescent rVACV strains in six days, with a minimum of just four days. The standard plaque assay requires chemicals for fixing and staining cells. Manual plaque counting based on visual inspection of the cell culture plates is time-consuming. Here, we developed a fluorescence-based plaque assay for quantifying the vaccinia virus that does not require a cell staining step. This approach is less toxic to researchers and is reproducible; it is thus an improvement over the traditional assay. Lastly, plaque counting by virtue of a fluorescence-based image is very convenient, as it can be performed directly on the computer. KW - fluorescent recombinant vaccinia virus KW - plaque isolation KW - IncuCyte\(^®\)S3 KW - plaque assay Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245104 SN - 2227-9059 VL - 9 IS - 8 ER - TY - JOUR A1 - Ye, Mingyu A1 - Wilhelm, Martina A1 - Gentschev, Ivaylo A1 - Szalay, Aladár T1 - A modified limiting dilution method for monoclonal stable cell line selection using a real-time fluorescence imaging system: A practical workflow and advanced applications JF - Methods and Protocols N2 - Stable cell lines are widely used in laboratory research and pharmaceutical industry. They are mainly applied in recombinant protein and antibody productions, gene function studies, drug screens, toxicity assessments, and for cancer therapy investigation. There are two types of cell lines, polyclonal and monoclonal origin, that differ regarding their homogeneity and heterogeneity. Generating a high-quality stable cell line, which can grow continuously and carry a stable genetic modification without alteration is very important for most studies, because polyclonal cell lines of multicellular origin can be highly variable and unstable and lead to inconclusive experimental results. The most commonly used technologies of single cell originate monoclonal stable cell isolation in laboratory are fluorescence-activated cell sorting (FACS) sorting and limiting dilution cloning. Here, we describe a modified limiting dilution method of monoclonal stable cell line selection using the real-time fluorescence imaging system IncuCyte\(^®\)S3. KW - monoclonal stable cell KW - limiting dilution cloning KW - ncuCyte\(^®\)S3 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228896 VL - 4 IS - 1 ER - TY - JOUR A1 - Petrov, Ivan A1 - Gentschev, Ivaylo A1 - Vyalkova, Anna A1 - Elashry, Mohamed I. A1 - Klymiuk, Michele C. A1 - Arnhold, Stefan A1 - Szalay, Aladar A. T1 - Canine Adipose-Derived Mesenchymal Stem Cells (cAdMSCs) as a "Trojan Horse" in Vaccinia Virus Mediated Oncolytic Therapy against Canine Soft Tissue Sarcomas JF - Viruses N2 - Several oncolytic viruses (OVs) including various human and canine adenoviruses, canine distemper virus, herpes-simplex virus, reovirus, and members of the poxvirus family, such as vaccinia virus and myxoma virus, have been successfully tested for canine cancer therapy in preclinical and clinical settings. The success of the cancer virotherapy is dependent on the ability of oncolytic viruses to overcome the attacks of the host immune system, to preferentially infect and lyse cancer cells, and to initiate tumor-specific immunity. To date, several different strategies have been developed to overcome the antiviral host defense barriers. In our study, we used canine adipose-derived mesenchymal stem cells (cAdMSCs) as a “Trojan horse” for the delivery of oncolytic vaccinia virus Copenhagen strain to achieve maximum oncolysis against canine soft tissue sarcoma (CSTS) tumors. A single systemic administration of vaccinia virus-loaded cAdMSCs was found to be safe and led to the significant reduction and substantial inhibition of tumor growth in a CSTS xenograft mouse model. This is the first example that vaccinia virus-loaded cAdMSCs could serve as a therapeutic agent against CSTS tumors. KW - oncolytic virus KW - cancer KW - vaccinia virus KW - canine cancer cell lines KW - canine adipose-derived mesenchymal stem cells (cAdMSCs) KW - canine soft tissue sarcoma (CSTS) KW - canine cancer therapy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236007 VL - 12 IS - 7 ER - TY - JOUR A1 - Cecil, Alexander A1 - Gentschev, Ivaylo A1 - Adelfinger, Marion A1 - Dandekar, Thomas A1 - Szalay, Aladar A. T1 - Vaccinia virus injected human tumors: oncolytic virus efficiency predicted by antigen profiling analysis fitted boolean models JF - Bioengineered N2 - Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a promising approach for cancer therapy. Recently, we showed that the oncolytic vaccinia virus GLV-1h68 has a therapeutic potential in treating human prostate and hepatocellular carcinomas in xenografted mice. In this study, we describe the use of dynamic boolean modeling for tumor growth prediction of vaccinia virus-injected human tumors. Antigen profiling data of vaccinia virus GLV-1h68-injected human xenografted mice were obtained, analyzed and used to calculate differences in the tumor growth signaling network by tumor type and gender. Our model combines networks for apoptosis, MAPK, p53, WNT, Hedgehog, the T-killer cell mediated cell death, Interferon and Interleukin signaling networks. The in silico findings conform very well with in vivo findings of tumor growth. Similar to a previously published analysis of vaccinia virus-injected canine tumors, we were able to confirm the suitability of our boolean modeling for prediction of human tumor growth after virus infection in the current study as well. In summary, these findings indicate that our boolean models could be a useful tool for testing of the efficacy of VACV-mediated cancer therapy already before its use in human patients. KW - boolean modeling KW - oncolytic virus KW - human xenografted mouse models KW - cancer therapy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200507 VL - 10 IS - 1 ER - TY - JOUR A1 - Adelfinger, Marion A1 - Gentschev, Ivaylo A1 - de Guibert, Julio Grimm A1 - Weibel, Stephanie A1 - Langbein-Laugwitz, Johanna A1 - Härtl, Barbara A1 - Escobar, Hugo Murua A1 - Nolte, Ingo A1 - Chen, Nanhai G. A1 - Aguilar, Richard J. A1 - Yu, Yong A. A1 - Zhang, Qian A1 - Frentzen, Alexa A1 - Szalay, Aladar A. T1 - Evaluation of a New Recombinant Oncolytic Vaccinia Virus Strain GLV-5b451 for Feline Mammary Carcinoma Therapy JF - PLoS ONE N2 - Virotherapy on the basis of oncolytic vaccinia virus (VACV) infection is a promising approach for cancer therapy. In this study we describe the establishment of a new preclinical model of feline mammary carcinoma (FMC) using a recently established cancer cell line, DT09/06. In addition, we evaluated a recombinant vaccinia virus strain, GLV-5b451, expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as an oncolytic agent against FMC. Cell culture data demonstrate that GLV-5b451 virus efficiently infected, replicated in and destroyed DT09/06 cancer cells. In the selected xenografts of FMC, a single systemic administration of GLV-5b451 led to significant inhibition of tumor growth in comparison to untreated tumor-bearing mice. Furthermore, tumor-specific virus infection led to overproduction of functional scAb GLAF-2, which caused drastic reduction of intratumoral VEGF levels and inhibition of angiogenesis. In summary, here we have shown, for the first time, that the vaccinia virus strains and especially GLV-5b451 have great potential for effective treatment of FMC in animal model. KW - antibodies KW - cancer treatment KW - carcinomas KW - vaccinia virus KW - oncolytic viruses KW - viral replication KW - cell cultures KW - enzyme-linked immunoassays Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119387 VL - 9 IS - 8 ER - TY - JOUR A1 - Patil, Sandeep S. A1 - Gentschev, Ivaylo A1 - Nolte, Ingo A1 - Ogilvie, Gregory A1 - Szalay, Aladar A. T1 - Oncolytic virotherapy in veterinary medicine: current status and future prospects for canine patients N2 - Oncolytic viruses refer to those that are able to eliminate malignancies by direct targeting and lysis of cancer cells, leaving non-cancerous tissues unharmed. Several oncolytic viruses including adenovirus strains, canine distemper virus and vaccinia virus strains have been used for canine cancer therapy in preclinical studies. However, in contrast to human studies, clinical trials with oncolytic viruses for canine cancer patients have not been reported. An ‘ideal’ virus has yet to be identified. This review is focused on the prospective use of oncolytic viruses in the treatment of canine tumors - a knowledge that will undoubtedly contribute to the development of oncolytic viral agents for canine cancer therapy in the future. KW - Medizin KW - cancer KW - canine cancer therapy KW - oncolytic virus KW - oncolysis KW - target molecule KW - combination therapy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75128 ER -