TY - JOUR A1 - Aydinli, Muharrem A1 - Liang, Chunguang A1 - Dandekar, Thomas T1 - Motif and conserved module analysis in DNA (promoters, enhancers) and RNA (lncRNA, mRNA) using AlModules JF - Scientific Reports N2 - Nucleic acid motifs consist of conserved and variable nucleotide regions. For functional action, several motifs are combined to modules. The tool AIModules allows identification of such motifs including combinations of them and conservation in several nucleic acid stretches. AIModules recognizes conserved motifs and combinations of motifs (modules) allowing a number of interesting biological applications such as analysis of promoter and transcription factor binding sites (TFBS), identification of conserved modules shared between several gene families, e.g. promoter regions, but also analysis of shared and conserved other DNA motifs such as enhancers and silencers, in mRNA (motifs or regulatory elements e.g. for polyadenylation) and lncRNAs. The tool AIModules presented here is an integrated solution for motif analysis, offered as a Web service as well as downloadable software. Several nucleotide sequences are queried for TFBSs using predefined matrices from the JASPAR DB or by using one’s own matrices for diverse types of DNA or RNA motif discovery. Furthermore, AIModules can find TFBSs common to two or more sequences. Demanding high or low conservation, AIModules outperforms other solutions in speed and finds more modules (specific combinations of TFBS) than alternative available software. The application also searches RNA motifs such as polyadenylation site or RNA–protein binding motifs as well as DNA motifs such as enhancers as well as user-specified motif combinations (https://bioinfo-wuerz.de/aimodules/; alternative entry pages: https://aimodules.heinzelab.de or https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing/aimodules). The application is free and open source whether used online, on-site, or locally. KW - AIModules KW - nucleic acid motifs KW - DNA Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301268 VL - 12 IS - 1 ER - TY - JOUR A1 - Buchheim, Mark A. A1 - Keller, Alexander A1 - Koetschan, Christian A1 - Förster, Frank A1 - Merget, Benjamin A1 - Wolf, Matthias T1 - Internal Transcribed Spacer 2 (nu ITS2 rRNA) Sequence-Structure Phylogenetics: Towards an Automated Reconstruction of the Green Algal Tree of Life JF - PLoS ONE N2 - Background: Chloroplast-encoded genes (matK and rbcL) have been formally proposed for use in DNA barcoding efforts targeting embryophytes. Extending such a protocol to chlorophytan green algae, though, is fraught with problems including non homology (matK) and heterogeneity that prevents the creation of a universal PCR toolkit (rbcL). Some have advocated the use of the nuclear-encoded, internal transcribed spacer two (ITS2) as an alternative to the traditional chloroplast markers. However, the ITS2 is broadly perceived to be insufficiently conserved or to be confounded by introgression or biparental inheritance patterns, precluding its broad use in phylogenetic reconstruction or as a DNA barcode. A growing body of evidence has shown that simultaneous analysis of nucleotide data with secondary structure information can overcome at least some of the limitations of ITS2. The goal of this investigation was to assess the feasibility of an automated, sequence-structure approach for analysis of IT2 data from a large sampling of phylum Chlorophyta. Methodology/Principal Findings: Sequences and secondary structures from 591 chlorophycean, 741 trebouxiophycean and 938 ulvophycean algae, all obtained from the ITS2 Database, were aligned using a sequence structure-specific scoring matrix. Phylogenetic relationships were reconstructed by Profile Neighbor-Joining coupled with a sequence structure-specific, general time reversible substitution model. Results from analyses of the ITS2 data were robust at multiple nodes and showed considerable congruence with results from published phylogenetic analyses. Conclusions/Significance: Our observations on the power of automated, sequence-structure analyses of ITS2 to reconstruct phylum-level phylogenies of the green algae validate this approach to assessing diversity for large sets of chlorophytan taxa. Moreover, our results indicate that objections to the use of ITS2 for DNA barcoding should be weighed against the utility of an automated, data analysis approach with demonstrated power to reconstruct evolutionary patterns for highly divergent lineages. KW - RBCL Gene-sequences KW - Colonial volvocales chlorophyta KW - 26S RDNA Data KW - Land plants KW - Molecular systematics KW - Secondary structure KW - Nuclear RDNA KW - DNA KW - Barcodes KW - Dasycladales chlorophyta KW - Profile distances Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140866 VL - 6 IS - 2 ER - TY - JOUR A1 - Vogel, Benjamin A1 - Löschberger, Anna A1 - Sauer, Markus A1 - Hock, Robert T1 - Cross-linking of DNA through HMGA1 suggests a DNA scaffold N2 - Binding of proteins to DNA is usually considered 1D with one protein bound to one DNA molecule. In principle, proteins with multiple DNA binding domains could also bind to and thereby cross-link different DNA molecules. We have investigated this possibility using high-mobility group A1 (HMGA1) proteins, which are architectural elements of chromatin and are involved in the regulation of multiple DNA-dependent processes. Using direct stochastic optical reconstruction microscopy (dSTORM), we could show that overexpression of HMGA1a-eGFP in Cos-7 cells leads to chromatin aggregation. To investigate if HMGA1a is directly responsible for this chromatin compaction we developed a DNA cross-linking assay. We were able to show for the first time that HMGA1a can cross-link DNA directly. Detailed analysis using point mutated proteins revealed a novel DNA cross-linking domain. Electron microscopy indicates that HMGA1 proteins are able to create DNA loops and supercoils in linearized DNA confirming the cross-linking ability of HMGA1a. This capacity has profound implications for the spatial organization of DNA in the cell nucleus and suggests cross-linking activities for additional nuclear proteins. KW - DNA Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68865 ER - TY - JOUR A1 - Thiry, Marc A1 - Scheer, Ulrich A1 - Goessens, Guy T1 - Immunoelectron microscopic study of nucleolar DNA during mitosis in Ehrlich tumour cells N2 - In order to investigate the DNA localization within Ehrlich tumor cell nucleoli during mitosis, two recent immunocytochemical methods using either an anti-DNA or an anti-bromodeoxyuridine (BrdU) monoclonal antibody have been applied. In both cases, the immunogold labeling has been performed on ultrathin sections of cells embedded either in Lowicryl K4M or in Epon, respectively. Identical results are observed with both immunocytochemical approaches. In the interphase nucleolus, besides the labeling of the perinucleolar chromatin shell and of its intranucleolar invaginations which penetrate into the nucleolar body and often terminate at the fibrillar centers, a few gold particles are also preferentially found towards the peripheral region of the fibrillar centers. In contrast, the dense fibrillar component and the granular component are never labeled. During mitosis, the fibrillar centers persist at the chromosomal nucleolus organizing regions (NOR's) and can be selectively stained by the silver method. However, these metaphase fibrillar centers are no longer decorated by the DNA- or BrdU antibodies. These results indicate that until the end of prophase, rRNA genes are present inside the fibrillar center material, disappear during metaphase and reappear in reconstituting nucleoli during telophase. Thus, fibrillar centers appear to represent structures sui generis, which are populated by rRNA genes only when the nucleolus is functionally active. In segregated nucleoli after actinomycin D treatment, the DNA labeling is exclusively restricted to the perinucleolar chromatin blocks. These findings also suggest that the DNA content of the fibrillar center material varies according to the rRNA transcription level of the cells. The results are discussed in the light of the present knowledge of the functional organization of the nucleolus. KW - Cytologie KW - Nucleolus KW - DNA KW - mitosis Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40745 ER - TY - JOUR A1 - Thiry, Marc A1 - Scheer, Ulrich A1 - Goessens, Guy T1 - Localization of DNA within Ehrlich tumour cells nucleoli by immunoelectron microscopy N2 - The distribution of DNA in Ehrlich tumour cell nucleoli was investigated by means of an immunocytochemical approach , involving a monoclonal antibody directed against double- and single-stranded DNA. Immunolabelling was performed . either before or after the embedding process. The postembedding labelling method allows better ultrastructural preservation than the preembedding labelling method. In particular, the various nucleolar components are well preserved and identifiable. In the nucleolus, labelling is particularly concentrated over the perinucleolar chromatin and over its intranucleolar invaginations, which penetrate the nucleolar body and often terminate at the fibrillar centres. In addition, aggregates of gold particles are found in the fibrillar centres, preferentially towards the peripheral regions. By contrast, the dense fibrillar component is completely devoid of labelling. The results seem to indicate that DNA containing the rDNA genes is located in the fibrillar centres, with a preference for the peripheral regions. This finding suggests that transcription of the rDNA genes should occur within the confines of the fibrillar centre, probably close to the boundary region of the surrounding dense fibrillar component. The results are discussed in the light of present knowledge of the functional organization of the nucleolus. KW - nucleolus KW - DNA KW - monoclonal antibody Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39327 ER -