TY - JOUR A1 - Tu, Xiaolin A1 - Chen, Jianquan A1 - Lim, Joohyun A1 - Karner, Courtney M. A1 - Lee, Seung-Yon A1 - Heisig, Julia A1 - Wiese, Cornelia A1 - Surendran, Kameswaran A1 - Kopan, Raphael A1 - Gessler, Manfred A1 - Long, Fanxin T1 - Physiological Notch Signaling Maintains Bone Homeostasis via RBPjk and Hey Upstream of NFATc1 JF - PLoS Genetics N2 - Notch signaling between neighboring cells controls many cell fate decisions in metazoans both during embryogenesis and in postnatal life. Previously, we uncovered a critical role for physiological Notch signaling in suppressing osteoblast differentiation in vivo. However, the contribution of individual Notch receptors and the downstream signaling mechanism have not been elucidated. Here we report that removal of Notch2, but not Notch1, from the embryonic limb mesenchyme markedly increased trabecular bone mass in adolescent mice. Deletion of the transcription factor RBPjk, a mediator of all canonical Notch signaling, in the mesenchymal progenitors but not the more mature osteoblast-lineage cells, caused a dramatic high-bone-mass phenotype characterized by increased osteoblast numbers, diminished bone marrow mesenchymal progenitor pool, and rapid age-dependent bone loss. Moreover, mice deficient in Hey1 and HeyL, two target genes of Notch-RBPjk signaling, exhibited high bone mass. Interestingly, Hey1 bound to and suppressed the NFATc1 promoter, and RBPjk deletion increased NFATc1 expression in bone. Finally, pharmacological inhibition of NFAT alleviated the high-bone-mass phenotype caused by RBPjk deletion. Thus, Notch-RBPjk signaling functions in part through Hey1-mediated inhibition of NFATc1 to suppress osteoblastogenesis, contributing to bone homeostasis in vivo. KW - expression KW - axial skeletal defects KW - transcription factor KW - alagille syndrome KW - osteoblast differentiation KW - human jagged1 KW - aortic-valve KW - T cells KW - mutations KW - mice Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133490 VL - 8 IS - 3 ER - TY - JOUR A1 - Heisig, Julia A1 - Weber, David A1 - Englberger, Eva A1 - Winkler, Anja A1 - Kneitz, Susanne A1 - Sung, Wing-Kin A1 - Wolf, Elmar A1 - Eilers, Martin A1 - Wei, Chia-Lin A1 - Gessler, Manfred T1 - Target Gene Analysis by Microarrays and Chromatin Immunoprecipitation Identifies HEY Proteins as Highly Redundant bHLH Repressors N2 - HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an Ebox motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression. KW - Biologie Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75341 ER - TY - JOUR A1 - Schmitt, Jana A1 - Backes, Christina A1 - Nourkami-Tutdibi, Nasenien A1 - Leidinger, Petra A1 - Deutscher, Stephanie A1 - Beier, Markus A1 - Gessler, Manfred A1 - Graf, Norbert A1 - Lenhof, Hans-Peter A1 - Keller, Andreas A1 - Meese, Eckart T1 - Treatment-independent miRNA signature in blood of wilms tumor patients JF - BMC Genomics N2 - Background Blood-born miRNA signatures have recently been reported for various tumor diseases. Here, we compared the miRNA signature in Wilms tumor patients prior and after preoperative chemotherapy according to SIOP protocol 2001. Results We did not find a significant difference between miRNA signature of both groups. However both, Wilms tumor patients prior and after chemotherapy showed a miRNA signature different from healthy controls. The signature of Wilms tumor patients prior to chemotherapy showed an accuracy of 97.5% and of patients after chemotherapy an accuracy of 97.0%, each as compared to healthy controls. Conclusion Our results provide evidence for a blood-born Wilms tumor miRNA signature largely independent of four weeks preoperative chemotherapy treatment. KW - miRNA Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124034 VL - 13 IS - 379 ER -