TY - JOUR A1 - Bahena, Paulina A1 - Daftarian, Narsis A1 - Maroofian, Reza A1 - Linares, Paola A1 - Villalobos, Daniel A1 - Mirrahimi, Mehraban A1 - Rad, Aboulfazl A1 - Doll, Julia A1 - Hofrichter, Michaela A. H. A1 - Koparir, Asuman A1 - Röder, Tabea A1 - Han, Seungbin A1 - Sabbaghi, Hamideh A1 - Ahmadieh, Hamid A1 - Behboudi, Hassan A1 - Villanueva-Mendoza, Cristina A1 - Cortés-Gonzalez, Vianney A1 - Zamora-Ortiz, Rocio A1 - Kohl, Susanne A1 - Kuehlewein, Laura A1 - Darvish, Hossein A1 - Alehabib, Elham A1 - La Arenas-Sordo, Maria de Luz A1 - Suri, Fatemeh A1 - Vona, Barbara A1 - Haaf, Thomas T1 - Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment JF - Human Genetics N2 - Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf-blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15%) probands displayed other genetic entities with dual sensory impairment, including Alström syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf-blind cohort was 92%. Two (3%) probands were partially solved and only 3 (5%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities. KW - Usher syndrome KW - hearing impairment KW - combined retinal dystrophy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267750 SN - 1432-1203 VL - 141 IS - 3-4 ER - TY - JOUR A1 - Lichter, Katharina A1 - Paul, Mila Marie A1 - Pauli, Martin A1 - Schoch, Susanne A1 - Kollmannsberger, Philip A1 - Stigloher, Christian A1 - Heckmann, Manfred A1 - Sirén, Anna-Leena T1 - Ultrastructural analysis of wild-type and RIM1α knockout active zones in a large cortical synapse JF - Cell Reports N2 - Rab3A-interacting molecule (RIM) is crucial for fast Ca\(^{2+}\)-triggered synaptic vesicle (SV) release in presynaptic active zones (AZs). We investigated hippocampal giant mossy fiber bouton (MFB) AZ architecture in 3D using electron tomography of rapid cryo-immobilized acute brain slices in RIM1α\(^{−/−}\) and wild-type mice. In RIM1α\(^{−/−}\), AZs are larger with increased synaptic cleft widths and a 3-fold reduced number of tightly docked SVs (0–2 nm). The distance of tightly docked SVs to the AZ center is increased from 110 to 195 nm, and the width of their electron-dense material between outer SV membrane and AZ membrane is reduced. Furthermore, the SV pool in RIM1α\(^{−/−}\) is more heterogeneous. Thus, RIM1α, besides its role in tight SV docking, is crucial for synaptic architecture and vesicle pool organization in MFBs. KW - active zone KW - acute brain slices KW - CA3 KW - electron tomography KW - high-pressure freezing KW - hippocampal mossy fiber bouton KW - RIM1α KW - SV pool KW - synaptic ultrastructure KW - presynaptic Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300913 VL - 40 IS - 12 ER - TY - JOUR A1 - Jeanclos, Elisabeth A1 - Schlötzer, Jan A1 - Hadamek, Kerstin A1 - Yuan-Chen, Natalia A1 - Alwahsh, Mohammad A1 - Hollmann, Robert A1 - Fratz, Stefanie A1 - Yesilyurt-Gerhards, Dilan A1 - Frankenbach, Tina A1 - Engelmann, Daria A1 - Keller, Angelika A1 - Kaestner, Alexandra A1 - Schmitz, Werner A1 - Neuenschwander, Martin A1 - Hergenröder, Roland A1 - Sotriffer, Christoph A1 - von Kries, Jens Peter A1 - Schindelin, Hermann A1 - Gohla, Antje T1 - Glycolytic flux control by drugging phosphoglycolate phosphatase JF - Nature Communications N2 - Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates. KW - phosphoglycolate phosphatase KW - glycolytic flux control KW - intrinsic metabolism Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300928 VL - 13 IS - 1 ER - TY - JOUR A1 - Kaya-Zeeb, Sinan A1 - Engelmayer, Lorenz A1 - Straßburger, Mara A1 - Bayer, Jasmin A1 - Bähre, Heike A1 - Seifert, Roland A1 - Scherf-Clavel, Oliver A1 - Thamm, Markus T1 - Octopamine drives honeybee thermogenesis JF - eLife N2 - In times of environmental change species have two options to survive: they either relocate to a new habitat or they adapt to the altered environment. Adaptation requires physiological plasticity and provides a selection benefit. In this regard, the Western honeybee (Apis mellifera) protrudes with its thermoregulatory capabilities, which enables a nearly worldwide distribution. Especially in the cold, shivering thermogenesis enables foraging as well as proper brood development and thus survival. In this study, we present octopamine signaling as a neurochemical prerequisite for honeybee thermogenesis: we were able to induce hypothermia by depleting octopamine in the flight muscles. Additionally, we could restore the ability to increase body temperature by administering octopamine. Thus, we conclude that octopamine signaling in the flight muscles is necessary for thermogenesis. Moreover, we show that these effects are mediated by β octopamine receptors. The significance of our results is highlighted by the fact the respective receptor genes underlie enormous selective pressure due to adaptation to cold climates. Finally, octopamine signaling in the service of thermogenesis might be a key strategy to survive in a changing environment. KW - honeybee KW - octopamine KW - thermogenesis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301327 VL - 11 ER - TY - JOUR A1 - Reinhard, Nils A1 - Bertolini, Enrico A1 - Saito, Aika A1 - Sekiguchi, Manabu A1 - Yoshii, Taishi A1 - Rieger, Dirk A1 - Helfrich‐Förster, Charlotte T1 - The lateral posterior clock neurons of Drosophila melanogaster express three neuropeptides and have multiple connections within the circadian clock network and beyond JF - Journal of Comparative Neurology N2 - Drosophila’s lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split‐Gal4 line, here we describe LPNs’ morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness‐promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies’ morning and evening activity (M‐ and E‐neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan‐shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN. KW - activity KW - circadian clock neurons KW - insect brain KW - neuropeptides KW - sleep KW - trans‐Tango Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276456 VL - 530 IS - 9 SP - 1507 EP - 1529 ER - TY - JOUR A1 - Lasway, Julius V. A1 - Peters, Marcell K. A1 - Njovu, Henry K. A1 - Eardley, Connal A1 - Pauly, Alain A1 - Steffan‐Dewenter, Ingolf T1 - Agricultural intensification with seasonal fallow land promotes high bee diversity in Afrotropical drylands JF - Journal of Applied Ecology N2 - The exponential increase in the human population in tandem with increased food demand has caused agriculture to be the global‐dominant form of land use. Afrotropical drylands are currently facing the loss of natural savannah habitats and agricultural intensification with largely unknown consequences for bees. Here we investigate the effects of agricultural intensification on bee assemblages in the Afrotropical drylands of northern Tanzania. We disentangled the direct effects of agricultural intensification and temperature on bee richness from indirect effects mediated by changes in floral resources. We collected data from 24 study sites representing three levels of management intensity (natural savannah, moderate intensive and highly intensive agriculture) spanning an extensive gradient of mean annual temperature (MAT) in northern Tanzania. We used ordinary linear models and path analysis to test the effects of agricultural intensity and MAT on bee species richness, bee species composition and body‐size variation of bee communities. We found that bee species richness increased with agricultural intensity and with increasing temperature. The effects of agricultural intensity and temperature on bee species richness were mediated by the positive effects of agriculture and temperature on the richness of floral resources used by bees. During the off‐growing season, agricultural land was characterized by an extensive period of fallow land holding a very high density of flowering plants with unique bee species composition. The increase in bee diversity in agricultural habitats paralleled an increasing variation of bee body sizes with agricultural intensification that, however, diminished in environments with higher temperatures. Synthesis and applications. Our study reveals that bee assemblages in Afrotropical drylands benefit from agricultural intensification in the way it is currently practiced. However, further land‐use intensification, including year‐round irrigated crop monocultures and excessive use of agrochemicals, is likely to exert a negative impact on bee diversity and pollination services, as reported in temperate regions. Moreover, several bee species were restricted to natural savannah habitats. To conserve bee communities and guarantee pollination services in the region, a mixture of savannah and agriculture, with long periods of fallow land should be maintained. KW - bee abundance KW - bee body size KW - bee species richness KW - forage resources KW - inter‐tegular distance KW - mean annual temperature KW - northern Tanzania KW - species community composition Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311877 VL - 59 IS - 12 SP - 3014 EP - 3026 ER - TY - JOUR A1 - Sponsler, Douglas B. A1 - Requier, Fabrice A1 - Kallnik, Katharina A1 - Classen, Alice A1 - Maihoff, Fabienne A1 - Sieger, Johanna A1 - Steffan‐Dewenter, Ingolf T1 - Contrasting patterns of richness, abundance, and turnover in mountain bumble bees and their floral hosts JF - Ecology N2 - Environmental gradients generate and maintain biodiversity on Earth. Mountain slopes are among the most pronounced terrestrial environmental gradients, and the elevational structure of species and their interactions can provide unique insight into the processes that govern community assembly and function in mountain ecosystems. We recorded bumble bee–flower interactions over 3 years along a 1400‐m elevational gradient in the German Alps. Using nonlinear modeling techniques, we analyzed elevational patterns at the levels of abundance, species richness, species β‐diversity, and interaction β‐diversity. Though floral richness exhibited a midelevation peak, bumble bee richness increased with elevation before leveling off at the highest sites, demonstrating the exceptional adaptation of these bees to cold temperatures and short growing seasons. In terms of abundance, though, bumble bees exhibited divergent species‐level responses to elevation, with a clear separation between species preferring low versus high elevations. Overall interaction β‐diversity was mainly caused by strong turnover in the floral community, which exhibited a well‐defined threshold of β‐diversity rate at the tree line ecotone. Interaction β‐diversity increased sharply at the upper extreme of the elevation gradient (1800–2000 m), an interval over which we also saw steep decline in floral richness and abundance. Turnover of bumble bees along the elevation gradient was modest, with the highest rate of β‐diversity occurring over the interval from low‐ to mid‐elevation sites. The contrast between the relative robustness bumble bee communities and sensitivity of plant communities to the elevational gradient in our study suggests that the strongest effects of climate change on mountain bumble bees may be indirect effects mediated by the responses of their floral hosts, though bumble bee species that specialize in high‐elevation habitats may also experience significant direct effects of warming. KW - alpine plants KW - climate KW - elevation gradient KW - mountain ecology KW - pollination network Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287199 VL - 103 IS - 7 ER - TY - JOUR A1 - Gebert, Friederike A1 - Steffan‐Dewenter, Ingolf A1 - Kronbach, Patrick A1 - Peters, Marcell K. T1 - The role of diversity, body size and climate in dung removal: A correlative and experimental approach JF - Journal of Animal Ecology N2 - The mechanisms by which climatic changes influence ecosystem functions, that is, by a direct climatic control of ecosystem processes or by modifying richness and trait compositions of species communities, remain unresolved. This study is a contribution to this discourse by elucidating the linkages between climate, land use, biodiversity, body size and ecosystem functions. We disentangled direct climatic from biodiversity‐mediated effects by using dung removal by dung beetles as a model system and by combining correlative field data and exclosure experiments along an extensive elevational gradient on Mt. Kilimanjaro, Tanzania. Dung removal declined with increasing elevation, being associated with a strong reduction in the richness and body size traits of dung beetle communities. Climate influenced dung removal rates by modifying biodiversity rather than by direct effects. The biodiversity–ecosystem effect was driven by a change in the mean body size of dung beetles. Dung removal rates were strongly reduced when large dung beetles were experimentally excluded. This study underscores that climate influences ecosystem functions mainly by modifying biodiversity and underpins the important role of body size for dung removal. KW - altitudinal gradients KW - biodiversity–ecosystem functioning relationship KW - body size KW - diversity gradients KW - ecosystem services KW - land use KW - Scarabaeidae KW - temperature Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293907 VL - 91 IS - 11 SP - 2181 EP - 2191 ER - TY - JOUR A1 - Kortmann, Mareike A1 - Roth, Nicolas A1 - Buse, Jörn A1 - Hilszczański, Jacek A1 - Jaworski, Tomasz A1 - Morinière, Jérôme A1 - Seidl, Rupert A1 - Thorn, Simon A1 - Müller, Jörg C. T1 - Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations JF - Ecological Applications N2 - Natural disturbances are increasing around the globe, also impacting protected areas. Although previous studies have indicated that natural disturbances result in mainly positive effects on biodiversity, these analyses mostly focused on a few well established taxonomic groups, and thus uncertainty remains regarding the comprehensive impact of natural disturbances on biodiversity. Using Malaise traps and meta‐barcoding, we studied a broad range of arthropod taxa, including dark and cryptic taxa, along a gradient of bark beetle disturbance severities in five European national parks. We identified order‐level community thresholds of disturbance severity and classified barcode index numbers (BINs; a cluster system for DNA sequences, where each cluster corresponds to a species) as negative or positive disturbance indicators. Negative indicator BINs decreased above thresholds of low to medium disturbance severity (20%–30% of trees killed), whereas positive indicator BINs benefited from high disturbance severity (76%–98%). BINs allocated to a species name contained nearly as many positive as negative disturbance indicators, but dark and cryptic taxa, particularly Diptera and Hymenoptera in our data, contained higher numbers of negative disturbance indicator BINs. Analyses of changes in the richness of BINs showed variable responses of arthropods to disturbance severity at lower taxonomic levels, whereas no significant signal was detected at the order level due to the compensatory responses of the underlying taxa. We conclude that the analyses of dark taxa can offer new insights into biodiversity responses to disturbances. Our results suggest considerable potential for forest management to foster arthropod diversity, for example by maintaining both closed‐canopy forests (>70% cover) and open forests (<30% cover) on the landscape. KW - arthropods KW - biodiversity KW - conservation KW - metabarcoding KW - national park KW - natural disturbance KW - threshold indicator taxa analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276392 VL - 32 IS - 2 ER - TY - JOUR A1 - Uhler, Johannes A1 - Haase, Peter A1 - Hoffmann, Lara A1 - Hothorn, Torsten A1 - Schmidl, Jürgen A1 - Stoll, Stefan A1 - Welti, Ellen A. R. A1 - Buse, Jörn A1 - Müller, Jörg T1 - A comparison of different Malaise trap types JF - Insect Conservation and Diversity N2 - Recent reports on insect decline have highlighted the need for long‐term data on insect communities towards identifying their trends and drivers. With the launch of many new insect monitoring schemes to investigate insect communities over large spatial and temporal scales, Malaise traps have become one of the most important tools due to the broad spectrum of species collected and reduced capture bias through passive sampling of insects day and night. However, Malaise traps can vary in size, shape, and colour, and it is unknown how these differences affect biomass, species richness, and composition of trap catch, making it difficult to compare results between studies. We compared five Malaise trap types (three variations of the Townes and two variations of the Bartak Malaise trap) to determine their effects on biomass and species richness as identified by metabarcoding. Insect biomass varied by 20%–55%, not strictly following trap size but varying with trap type. Total species richness was 20%–38% higher in the three Townes trap models compared to the Bartak traps. Bartak traps captured lower richness of highly mobile taxa but increased richness of ground‐dwelling taxa. The white roofed Townes trap captured a higher richness of pollinators. We find that biomass, total richness, and taxa group specific richness are all sensitive to Malaise trap type. Trap type should be carefully considered and aligned to match monitoring and research questions. Additionally, our estimates of trap type effects can be used to adjust results to facilitate comparisons across studies. KW - Bartak KW - biodiversity KW - insect communities KW - insect monitoring KW - Malaise trap KW - Townes KW - trap selectivity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293694 VL - 15 IS - 6 SP - 666 EP - 672 ER -