TY - JOUR A1 - Müller, Jörg A1 - Mitesser, Oliver A1 - Schaefer, H. Martin A1 - Seibold, Sebastian A1 - Busse, Annika A1 - Kriegel, Peter A1 - Rabl, Dominik A1 - Gelis, Rudy A1 - Arteaga, Alejandro A1 - Freile, Juan A1 - Leite, Gabriel Augusto A1 - de Melo, Tomaz Nascimento A1 - LeBien, Jack A1 - Campos-Cerqueira, Marconi A1 - Blüthgen, Nico A1 - Tremlett, Constance J. A1 - Böttger, Dennis A1 - Feldhaar, Heike A1 - Grella, Nina A1 - Falconí-López, Ana A1 - Donoso, David A. A1 - Moriniere, Jerome A1 - Buřivalová, Zuzana T1 - Soundscapes and deep learning enable tracking biodiversity recovery in tropical forests JF - Nature Communications N2 - Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures – an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data. KW - animal behaviour KW - conservation biology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358130 VL - 14 ER - TY - JOUR A1 - Englmeier, Jana A1 - Mitesser, Oliver A1 - Benbow, M. Eric A1 - Hothorn, Torsten A1 - von Hoermann, Christian A1 - Benjamin, Caryl A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Haensel, Maria A1 - Redlich, Sarah A1 - Riebl, Rebekka A1 - Rojas Botero, Sandra A1 - Rummler, Thomas A1 - Steffan-Dewenter, Ingolf A1 - Stengel, Elisa A1 - Tobisch, Cynthia A1 - Uhler, Johannes A1 - Uphus, Lars A1 - Zhang, Jie A1 - Müller, Jörg T1 - Diverse effects of climate, land use, and insects on dung and carrion decomposition JF - Ecosystems N2 - Land-use intensification and climate change threaten ecosystem functions. A fundamental, yet often overlooked, function is decomposition of necromass. The direct and indirect anthropogenic effects on decomposition, however, are poorly understood. We measured decomposition of two contrasting types of necromass, rat carrion and bison dung, on 179 study sites in Central Europe across an elevational climate gradient of 168–1122 m a.s.l. and within both local and regional land uses. Local land-use types included forest, grassland, arable fields, and settlements and were embedded in three regional land-use types (near-natural, agricultural, and urban). The effects of insects on decomposition were quantified by experimental exclusion, while controlling for removal by vertebrates. We used generalized additive mixed models to evaluate dung weight loss and carrion decay rate along elevation and across regional and local land-use types. We observed a unimodal relationship of dung decomposition with elevation, where greatest weight loss occurred between 600 and 700 m, but no effects of local temperature, land use, or insects. In contrast to dung, carrion decomposition was continuously faster with both increasing elevation and local temperature. Carrion reached the final decomposition stage six days earlier when insect access was allowed, and this did not depend on land-use effect. Our experiment identified different major drivers of decomposition on each necromass form. The results show that dung and carrion decomposition are rather robust to local and regional land use, but future climate change and decline of insects could alter decomposition processes and the self-regulation of ecosystems. KW - decay KW - ecosystem function KW - global change KW - land-use intensification KW - necrobiome KW - urbanization Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325064 SN - 1432-9840 VL - 26 IS - 2 ER - TY - JOUR A1 - Uhler, Johannes A1 - Haase, Peter A1 - Hoffmann, Lara A1 - Hothorn, Torsten A1 - Schmidl, Jürgen A1 - Stoll, Stefan A1 - Welti, Ellen A. R. A1 - Buse, Jörn A1 - Müller, Jörg T1 - A comparison of different Malaise trap types JF - Insect Conservation and Diversity N2 - Recent reports on insect decline have highlighted the need for long‐term data on insect communities towards identifying their trends and drivers. With the launch of many new insect monitoring schemes to investigate insect communities over large spatial and temporal scales, Malaise traps have become one of the most important tools due to the broad spectrum of species collected and reduced capture bias through passive sampling of insects day and night. However, Malaise traps can vary in size, shape, and colour, and it is unknown how these differences affect biomass, species richness, and composition of trap catch, making it difficult to compare results between studies. We compared five Malaise trap types (three variations of the Townes and two variations of the Bartak Malaise trap) to determine their effects on biomass and species richness as identified by metabarcoding. Insect biomass varied by 20%–55%, not strictly following trap size but varying with trap type. Total species richness was 20%–38% higher in the three Townes trap models compared to the Bartak traps. Bartak traps captured lower richness of highly mobile taxa but increased richness of ground‐dwelling taxa. The white roofed Townes trap captured a higher richness of pollinators. We find that biomass, total richness, and taxa group specific richness are all sensitive to Malaise trap type. Trap type should be carefully considered and aligned to match monitoring and research questions. Additionally, our estimates of trap type effects can be used to adjust results to facilitate comparisons across studies. KW - Bartak KW - biodiversity KW - insect communities KW - insect monitoring KW - Malaise trap KW - Townes KW - trap selectivity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293694 VL - 15 IS - 6 SP - 666 EP - 672 ER - TY - JOUR A1 - Maihoff, Fabienne A1 - Friess, Nicolas A1 - Hoiss, Bernhard A1 - Schmid‐Egger, Christian A1 - Kerner, Janika A1 - Neumayer, Johann A1 - Hopfenmüller, Sebastian A1 - Bässler, Claus A1 - Müller, Jörg A1 - Classen, Alice T1 - Smaller, more diverse and on the way to the top: Rapid community shifts of montane wild bees within an extraordinary hot decade JF - Diversity and Distributions N2 - Aim Global warming is assumed to restructure mountain insect communities in space and time. Theory and observations along climate gradients predict that insect abundance and richness, especially of small‐bodied species, will increase with increasing temperature. However, the specific responses of single species to rising temperatures, such as spatial range shifts, also alter communities, calling for intensive monitoring of real‐world communities over time. Location German Alps and pre‐alpine forests in south‐east Germany. Methods We empirically examined the temporal and spatial change in wild bee communities and its drivers along two largely well‐protected elevational gradients (alpine grassland vs. pre‐alpine forest), each sampled twice within the last decade. Results We detected clear abundance‐based upward shifts in bee communities, particularly in cold‐adapted bumble bee species, demonstrating the speed with which mobile organisms can respond to climatic changes. Mean annual temperature was identified as the main driver of species richness in both regions. Accordingly, and in large overlap with expectations under climate warming, we detected an increase in bee richness and abundance, and an increase in small‐bodied species in low‐ and mid‐elevations along the grassland gradient. Community responses in the pre‐alpine forest gradient were only partly consistent with community responses in alpine grasslands. Main Conclusion In well‐protected temperate mountain regions, small‐bodied bees may initially profit from warming temperatures, by getting more abundant and diverse. Less severe warming, and differences in habitat openness along the forested gradient, however, might moderate species responses. Our study further highlights the utility of standardized abundance data for revealing rapid changes in bee communities over only one decade. KW - Alps KW - altitudinal gradient KW - body size KW - climate change KW - global warming KW - hymenoptera KW - pollinator KW - range shifts Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312126 VL - 29 IS - 2 ER - TY - JOUR A1 - Englmeier, Jana A1 - von Hoermann, Christian A1 - Rieker, Daniel A1 - Benbow, Marc Eric A1 - Benjamin, Caryl A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Haensel, Maria A1 - Lackner, Tomáš A1 - Mitesser, Oliver A1 - Redlich, Sarah A1 - Riebl, Rebekka A1 - Rojas-Botero, Sandra A1 - Rummler, Thomas A1 - Salamon, Jörg-Alfred A1 - Sommer, David A1 - Steffan-Dewenter, Ingolf A1 - Tobisch, Cynthia A1 - Uhler, Johannes A1 - Uphus, Lars A1 - Zhang, Jie A1 - Müller, Jörg T1 - Dung-visiting beetle diversity is mainly affected by land use, while community specialization is driven by climate JF - Ecology and Evolution N2 - Dung beetles are important actors in the self-regulation of ecosystems by driving nutrient cycling, bioturbation, and pest suppression. Urbanization and the sprawl of agricultural areas, however, destroy natural habitats and may threaten dung beetle diversity. In addition, climate change may cause shifts in geographical distribution and community composition. We used a space-for-time approach to test the effects of land use and climate on α-diversity, local community specialization (H\(_2\)′) on dung resources, and γ-diversity of dung-visiting beetles. For this, we used pitfall traps baited with four different dung types at 115 study sites, distributed over a spatial extent of 300 km × 300 km and 1000 m in elevation. Study sites were established in four local land-use types: forests, grasslands, arable sites, and settlements, embedded in near-natural, agricultural, or urban landscapes. Our results show that abundance and species density of dung-visiting beetles were negatively affected by agricultural land use at both spatial scales, whereas γ-diversity at the local scale was negatively affected by settlements and on a landscape scale equally by agricultural and urban land use. Increasing precipitation diminished dung-visiting beetle abundance, and higher temperatures reduced community specialization on dung types and γ-diversity. These results indicate that intensive land use and high temperatures may cause a loss in dung-visiting beetle diversity and alter community networks. A decrease in dung-visiting beetle diversity may disturb decomposition processes at both local and landscape scales and alter ecosystem functioning, which may lead to drastic ecological and economic damage. KW - coleoptera KW - coprophagous beetles KW - decomposition KW - global change KW - hill numbers KW - network analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312846 SN - 2045-7758 VL - 12 IS - 10 ER - TY - JOUR A1 - Ganuza, Cristina A1 - Redlich, Sarah A1 - Uhler, Johannes A1 - Tobisch, Cynthia A1 - Rojas-Botero, Sandra A1 - Peters, Marcell K. A1 - Zhang, Jie A1 - Benjamin, Caryl S. A1 - Englmeier, Jana A1 - Ewald, Jörg A1 - Fricke, Ute A1 - Haensel, Maria A1 - Kollmann, Johannes A1 - Riebl, Rebekka A1 - Uphus, Lars A1 - Müller, Jörg A1 - Steffan-Dewenter, Ingolf T1 - Interactive effects of climate and land use on pollinator diversity differ among taxa and scales JF - Science Advances N2 - Changes in climate and land use are major threats to pollinating insects, an essential functional group. Here, we unravel the largely unknown interactive effects of both threats on seven pollinator taxa using a multiscale space-for-time approach across large climate and land-use gradients in a temperate region. Pollinator community composition, regional gamma diversity, and community dissimilarity (beta diversity) of pollinator taxa were shaped by climate-land-use interactions, while local alpha diversity was solely explained by their additive effects. Pollinator diversity increased with reduced land-use intensity (forest < grassland < arable land < urban) and high flowering-plant diversity at different spatial scales, and higher temperatures homogenized pollinator communities across regions. Our study reveals declines in pollinator diversity with land-use intensity at multiple spatial scales and regional community homogenization in warmer and drier climates. Management options at several scales are highlighted to mitigate impacts of climate change on pollinators and their ecosystem services. KW - climate KW - land use KW - pollinator diversity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301303 VL - 8 IS - 18 ER - TY - JOUR A1 - Graf, Marlene A1 - Lettenmaier, Ludwig A1 - Müller, Jörg A1 - Hagge, Jonas T1 - Saproxylic beetles trace deadwood and differentiate between deadwood niches before their arrival on potential hosts JF - Insect Conservation and Diversity N2 - Deadwood provides a variety of habitats for saproxylic beetles. Whereas the understanding of the drivers promoting saproxylic beetle diversity has improved, the process of deadwood colonisation and beetle's potential to trace resources is poorly understood. However, the mechanisms facilitating deadwood detection by saproxylic beetles appears to be essential for survival, as deadwood is usually scattered in time and space. To investigate whether saproxylic beetles distinguish before their arrival on potential hosts between alive trees and deadwood (lying, stumps, standing), deadwood arrangement (aggregated, distributed) and different heights on standing resources (bottom = 0.5 m, middle = 4–5 m, top = 7.30–11.60 m), we sampled saproxylic beetles with sticky traps in a deadwood experiment. We found on average 67% higher abundance, 100% higher species numbers and 50–130% higher species diversity of colonising saproxylic beetles consistently for all deadwood types compared to alive trees with a distinct community composition on lying deadwood compared to the other resource types. Aggregated deadwood arrangement, which is associated with higher sun‐exposure, had a positive effect on species richness. The abundance, species number and diversity, was significantly higher for standing deadwood and alive trees at the bottom section of tree trunks. In contrast to living trees, however, the vertical position had an additional effect on the community composition on standing deadwood. Our results indicate that saproxylic beetles are attracted to potential deadwood habitats and actively select specific trunk sections before arriving on potential hosts. Furthermore, this study highlights the importance of sun‐exposed resources for species richness in saproxylic beetles. KW - deadwood KW - experiment KW - host discrimination KW - host selection KW - microclimate KW - saproxylic beetles KW - vertical stratification Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262507 VL - 15 IS - 1 SP - 48 EP - 60 ER - TY - JOUR A1 - Jahed, Razieh Rafiei A1 - Kavousi, Mohammad Reza A1 - Farashiani, Mohammad Ebrahim A1 - Sagheb-Talebi, Khosro A1 - Babanezhad, Manoochehr A1 - Courbaud, Benoit A1 - Wirtz, Roland A1 - Müller, Jörg A1 - Larrieu, Laurent T1 - A comparison of the formation rates and composition of tree-related microhabitats in beech-dominated primeval Carpathian and Hyrcanian forests JF - Forests N2 - Primeval forests in the temperate zone exist only as a few remnants, but theses serve as important reference areas for conservation. As key habitats, tree-related microhabitats (TreMs) are of intense interest to forest ecologists, but little is known about their natural composition and dynamics in different tree species. Beech forms a major part of the temperate forests that extend from Europe, home to European beech Fagus sylvatica L. (Fs), eastward to Iran, where Oriental beech Fagus orientalis Lipsky (Fo) is the dominant species. In this study, we compared TreMs in primeval forests of both species, using data from Fo growing in 25 inventory plots throughout the Hyrcanian forest belt in Iran and from Fs growing in a 9 ha permanent plot in the Uholka Forest of Ukraine. TreMs based on 47 types and 11 subgroups were recorded. Beech trees in the Hyrcanian forest had a higher mean diameter at breast height (dbh) than beech trees in Uholka and contained twice as many TreMs per hectare. Although the mean richness of TreMs per TreM bearing tree was similar in the two species, on the basis of the comparison single trees in two groups (n = 405 vs. 2251), the composition of the TreMs clearly differed, as the proportions of rot holes, root-buttress concavities, and crown deadwood were higher in the Hyrcanian Forest, and those of bark losses, exposed heartwood, and burrs and cankers higher in Uholka Forest. Estimates of TreMs dynamics based on dbh and using Weibull models showed a significantly faster cumulative increase of TreMs in Fo, in which saturation occurred already in trees with a dbh of 70–80 cm. By contrast, the increase in TreMs in Fs was continuous. In both species, the probability density was highest at a dbh of about 30 cm, but was twice as high in Fo. Because of limitations of our study design, the reason behind observed differences of TreM formation and composition between regions remains unclear, as it could be either result of the tree species or the environment, or their interaction. However, the observed differences were more likely the result of differences in the environment than in the two tree species. Nevertheless, our findings demonstrate that the Hyrcanian Forest, recently designated as a natural heritage site in Iran, is unique, not only as a tertiary relict or due to its endemic trees, herbs and arthropods, but also because of its TreMs, which form a distinct and rich habitat for associated taxa, including endemic saproxylic species. KW - TreMs KW - Fagus orientalis KW - Fagus sylvatica KW - primeval forest Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200849 SN - 1999-4907 VL - 11 IS - 2 ER - TY - JOUR A1 - Uhler, Johannes A1 - Redlich, Sarah A1 - Zhang, Jie A1 - Hothorn, Torsten A1 - Tobisch, Cynthia A1 - Ewald, Jörg A1 - Thorn, Simon A1 - Seibold, Sebastian A1 - Mitesser, Oliver A1 - Morinère, Jérôme A1 - Bozicevic, Vedran A1 - Benjamin, Caryl S. A1 - Englmeier, Jana A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Haensel, Maria A1 - Riebl, Rebekka A1 - Rojas-Botero, Sandra A1 - Rummler, Thomas A1 - Uphus, Lars A1 - Schmidt, Stefan A1 - Steffan-Dewenter, Ingolf A1 - Müller, Jörg T1 - Relationships of insect biomass and richness with land use along a climate gradient JF - Nature Communications N2 - Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42%), whereas differences in total richness (-29%) and the richness of threatened species (-56%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines. KW - biodiversity KW - ecology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265058 VL - 12 IS - 1 ER - TY - JOUR A1 - Latifi, Hooman A1 - Holzwarth, Stefanie A1 - Skidmore, Andrew A1 - Brůna, Josef A1 - Červenka, Jaroslav A1 - Darvishzadeh, Roshanak A1 - Hais, Martin A1 - Heiden, Uta A1 - Homolová, Lucie A1 - Krzystek, Peter A1 - Schneider, Thomas A1 - Starý, Martin A1 - Wang, Tiejun A1 - Müller, Jörg A1 - Heurich, Marco T1 - A laboratory for conceiving Essential Biodiversity Variables (EBVs)—The ‘Data pool initiative for the Bohemian Forest Ecosystem’ JF - Methods in Ecology and Evolution N2 - Effects of climate change‐induced events on forest ecosystem dynamics of composition, function and structure call for increased long‐term, interdisciplinary and integrated research on biodiversity indicators, in particular within strictly protected areas with extensive non‐intervention zones. The long‐established concept of forest supersites generally relies on long‐term funds from national agencies and goes beyond the logistic and financial capabilities of state‐ or region‐wide protected area administrations, universities and research institutes. We introduce the concept of data pools as a smaller‐scale, user‐driven and reasonable alternative to co‐develop remote sensing and forest ecosystem science to validated products, biodiversity indicators and management plans. We demonstrate this concept with the Bohemian Forest Ecosystem Data Pool, which has been established as an interdisciplinary, international data pool within the strictly protected Bavarian Forest and Šumava National Parks and currently comprises 10 active partners. We demonstrate how the structure and impact of the data pool differs from comparable cases. We assessed the international influence and visibility of the data pool with the help of a systematic literature search and a brief analysis of the results. Results primarily suggest an increase in the impact and visibility of published material during the life span of the data pool, with highest visibilities achieved by research conducted on leaf traits, vegetation phenology and 3D‐based forest inventory. We conclude that the data pool results in an efficient contribution to the concept of global biodiversity observatory by evolving towards a training platform, functioning as a pool of data and algorithms, directly communicating with management for implementation and providing test fields for feasibility studies on earth observation missions. KW - bohemian forest ecosystem KW - data pool KW - forest ecosystem science KW - remote sensing KW - remote sensing‐enabled essential biodiversity variables Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262743 VL - 12 IS - 11 ER -