TY - JOUR A1 - Mayr, Antonia V. A1 - Peters, Marcell K. A1 - Eardley, Connal D. A1 - Renner, Marion E. A1 - Röder, Juliane A1 - Steffan-Dewenter, Ingolf T1 - Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera JF - Journal of Biogeography N2 - Aim: Temperature, food resources and top‐down regulation by antagonists are considered as major drivers of insect diversity, but their relative importance is poorly understood. Here, we used cavity‐nesting communities of bees, wasps and their antagonists to reveal the role of temperature, food resources, parasitism rate and land use as drivers of species richness at different trophic levels along a broad elevational gradient. Location: Mt. Kilimanjaro, Tanzania. Taxon: Cavity‐nesting Hymenoptera (Hymenoptera: Apidae, Colletidae, Megachilidae, Crabronidae, Sphecidae, Pompilidae, Vespidae). Methods: We established trap nests on 25 study sites that were distributed over similar large distances in terms of elevation along an elevational gradient from 866 to 1788 m a.s.l., including both natural and disturbed habitats. We quantified species richness and abundance of bees, wasps and antagonists, parasitism rates and flower or arthropod food resources. Data were analysed with generalized linear models within a multi‐model inference framework. Results: Elevational species richness patterns changed with trophic level from monotonically declining richness of bees to increasingly humped‐shaped patterns for caterpillar‐hunting wasps, spider‐hunting wasps and antagonists. Parasitism rates generally declined with elevation but were higher for wasps than for bees. Temperature was the most important predictor of both bee and wasp host richness patterns. Antagonist richness patterns were also well predicted by temperature, but in contrast to host richness patterns, additionally by resource abundance and diversity. The conversion of natural habitats through anthropogenic land use, which included biomass removal, agricultural inputs, vegetation structure and percentage of surrounding agricultural habitats, had no significant effects on bee and wasp communities. Main conclusions: Our study underpins the importance of temperature as a main driver of diversity gradients in ectothermic organisms and reveals the increasingly important role of food resources at higher trophic levels. Higher parasitism rates at higher trophic levels and at higher temperatures indicated that the relative importance of bottom‐up and top‐down drivers of species richness change across trophic levels and may respond differently to future climate change. KW - land-use change KW - species richness KW - trophic levels KW - wasps KW - feeding guilds KW - antagonists KW - bees KW - bottom‐up and top‐down control KW - elevational gradients Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208101 VL - 47 IS - 4 ER - TY - JOUR A1 - De Palma, Adriana A1 - Abrahamczyk, Stefan A1 - Aizen, Marcelo A. A1 - Albrecht, Matthias A1 - Basset, Yves A1 - Bates, Adam A1 - Blake, Robin J. A1 - Boutin, Céline A1 - Bugter, Rob A1 - Connop, Stuart A1 - Cruz-López, Leopoldo A1 - Cunningham, Saul A. A1 - Darvill, Ben A1 - Diekötter, Tim A1 - Dorn, Silvia A1 - Downing, Nicola A1 - Entling, Martin H. A1 - Farwig, Nina A1 - Felicioli, Antonio A1 - Fonte, Steven J. A1 - Fowler, Robert A1 - Franzen, Markus Franzén A1 - Goulson, Dave A1 - Grass, Ingo A1 - Hanley, Mick E. A1 - Hendrix, Stephen D. A1 - Herrmann, Farina A1 - Herzog, Felix A1 - Holzschuh, Andrea A1 - Jauker, Birgit A1 - Kessler, Michael A1 - Knight, M. E. A1 - Kruess, Andreas A1 - Lavelle, Patrick A1 - Le Féon, Violette A1 - Lentini, Pia A1 - Malone, Louise A. A1 - Marshall, Jon A1 - Martínez Pachón, Eliana A1 - McFrederick, Quinn S. A1 - Morales, Carolina L. A1 - Mudri-Stojnic, Sonja A1 - Nates-Parra, Guiomar A1 - Nilsson, Sven G. A1 - Öckinger, Erik A1 - Osgathorpe, Lynne A1 - Parra-H, Alejandro A1 - Peres, Carlos A. A1 - Persson, Anna S. A1 - Petanidou, Theodora A1 - Poveda, Katja A1 - Power, Eileen F. A1 - Quaranta, Marino A1 - Quintero, Carolina A1 - Rader, Romina A1 - Richards, Miriam H. A1 - Roulston, T’ai A1 - Rousseau, Laurent A1 - Sadler, Jonathan P. A1 - Samnegård, Ulrika A1 - Schellhorn, Nancy A. A1 - Schüepp, Christof A1 - Schweiger, Oliver A1 - Smith-Pardo, Allan H. A1 - Steffan-Dewenter, Ingolf A1 - Stout, Jane C. A1 - Tonietto, Rebecca K. A1 - Tscharntke, Teja A1 - Tylianakis, Jason M. A1 - Verboven, Hans A. F. A1 - Vergara, Carlos H. A1 - Verhulst, Jort A1 - Westphal, Catrin A1 - Yoon, Hyung Joo A1 - Purvis, Andy T1 - Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases JF - Scientific Reports N2 - Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises. KW - bee community KW - land-use change KW - intensification KW - geographic biases KW - taxonomic biases KW - global dataset Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167642 VL - 6 ER -