TY - JOUR A1 - Scheer, Ulrich A1 - Messner, Karin A1 - Hazan, Rachel A1 - Raska, Ivan A1 - Hansmann, Paul A1 - Falk, Heinz A1 - Spiess, Eberhard A1 - Franke, Werner W. T1 - High sensitivity immunolocalization of double and single-stranded DNA by a monoclonal antibody N2 - A monoclonal antibody (AK 30-10) is described which specifically reacts with DNA both in double and single-stranded forms but not with other molecules and structures, including deoxyribonucleotides and RNAs. When used in immunocytochemical experiments on tissue sections and permeabilized cultured cells, this antibody detects DNA-containing structures, even when the DNA is present in very small amounts. Examples of high resolution detection include the DNA present in amplified extrachromosomal nucleoli, chromomeres of lampbrush chromosomes, mitochondria, chloroplasts and mycoplasmal particles. In immunoelectron microscopy using the immunogold technique, the DNA was localized in distinct substructures such as the "fibrillar centers" of nucleoli and certain stromal centers in chloroplasts. The antibody also reacts with DNA of chromatin of living cells, as shown by microinjection into cultured mitotic cells and into nuclei of amphibian oocytes. The potential value and the limitations of immunocytochemical DNA detection are discussed. KW - Cytologie KW - DNA antibodies KW - monoclonal antibodies KW - DNA immunolocalization KW - chromatin KW - mycoplasma tests Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41063 ER - TY - JOUR A1 - Laine, Romain F. A1 - Albecka, Anna A1 - van de Linde, Sebastian A1 - Rees, Eric J. A1 - Crump, Colin M. A1 - Kaminski, Clemens F. T1 - Structural analysis of herpes simplex virus by optical super-resolution imaging JF - Nature Communications N2 - Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument. KW - tegument protein pUL36 KW - fluorescence microscopy KW - monoclonal antibodies KW - 3-dimensional structure KW - type-1 KW - nuclear pore complex KW - reconstruction microscopy KW - localization microscopy KW - resolution KW - envelopment Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144623 VL - 6 IS - 5980 ER - TY - JOUR A1 - Buchner, Erich A1 - Blanco Redondo, Beatriz A1 - Bunz, Melanie A1 - Halder, Partho A1 - Sadanandappa, Madhumala K. A1 - Mühlbauer, Barbara A1 - Erwin, Felix A1 - Hofbauer, Alois A1 - Rodrigues, Veronica A1 - VijayRaghavan, K. A1 - Ramaswami, Mani A1 - Rieger, Dirk A1 - Wegener, Christian A1 - Förster, Charlotte T1 - Identification and Structural Characterization of Interneurons of the Drosophila Brain by Monoclonal Antibodies of the Würzburg Hybridoma Library JF - PLoS ONE N2 - Several novel synaptic proteins have been identified by monoclonal antibodies (mAbs) of the Würzburg hybridoma library generated against homogenized Drosophila brains, e.g. cysteine string protein, synapse-associated protein of 47 kDa, and Bruchpilot. However, at present no routine technique exists to identify the antigens of mAbs of our library that label only a small number of cells in the brain. Yet these antibodies can be used to reproducibly label and thereby identify these cells by immunohistochemical staining. Here we describe the staining patterns in the Drosophila brain for ten mAbs of the Würzburg hybridoma library. Besides revealing the neuroanatomical structure and distribution of ten different sets of cells we compare the staining patterns with those of antibodies against known antigens and GFP expression patterns driven by selected Gal4 lines employing regulatory sequences of neuronal genes. We present examples where our antibodies apparently stain the same cells in different Gal4 lines suggesting that the corresponding regulatory sequences can be exploited by the split-Gal4 technique for transgene expression exclusively in these cells. The detection of Gal4 expression in cells labeled by mAbs may also help in the identification of the antigens recognized by the antibodies which then in addition to their value for neuroanatomy will represent important tools for the characterization of the antigens. Implications and future strategies for the identification of the antigens are discussed. KW - cell staining KW - drosophila melanogaster KW - gene expression KW - hybridomas KW - immune serum KW - library screening KW - monoclonal antibodies KW - neurons Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97109 ER -