TY - JOUR A1 - Sommerlandt, F. M. J. A1 - Huber, W. A1 - Spaethe, J. T1 - Social Information in the Stingless Bee, Trigona corvina Cockerell (Hymenoptera: Apidae): The Use of Visual and Olfactory Cues at the Food Site JF - Sociobiology N2 - For social insects, colony performance is largely dependent on the quantity and quality of food intake and thus on the efficiency of its foragers. In addition to innate preferences and previous experience, foragers can use social information to decide when and where to forage. In some stingless bee (Meliponini) species, individual foraging decisions are shown to be influenced by the presence of social information at resource sites. In dual choice tests, we studied whether visual and/or olfactory cues affect individual decision-making in rigona corvina Cockerell and if this information is species-specific. We found that T. corvina foragers possess local enhancement: they are attracted by olfactory and visual cues released by conspecifics but avoid feeders associated with heterospecific individuals of the species Tetragona ziegleri (Friese). Overall, olfactory cues seem to be more important than visual cues, but information by visual cues alone is sufficient for discrimination. KW - visual cues KW - recruitment KW - local enhancement KW - odor marks KW - communication Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118120 VL - 61 IS - 4 ER - TY - JOUR A1 - Nürnberger, Fabian A1 - Steffan-Dewenter, Ingolf A1 - Härtel, Stephan T1 - Combined effects of waggle dance communication and landscape heterogeneity on nectar and pollen uptake in honey bee colonies JF - PeerJ N2 - The instructive component of waggle dance communication has been shown to increase resource uptake of Apis mellifera colonies in highly heterogeneous resource environments, but an assessment of its relevance in temperate landscapes with different levels of resource heterogeneity is currently lacking. We hypothesized that the advertisement of resource locations via dance communication would be most relevant in highly heterogeneous landscapes with large spatial variation of floral resources. To test our hypothesis, we placed 24 Apis mellifera colonies with either disrupted or unimpaired instructive component of dance communication in eight Central European agricultural landscapes that differed in heterogeneity and resource availability. We monitored colony weight change and pollen harvest as measure of foraging success. Dance disruption did not significantly alter colony weight change, but decreased pollen harvest compared to the communicating colonies by 40%. There was no general effect of resource availability on nectar or pollen foraging success, but the effect of landscape heterogeneity on nectar uptake was stronger when resource availability was high. In contrast to our hypothesis, the effects of disrupted bee communication on nectar and pollen foraging success were not stronger in landscapes with heterogeneous compared to homogenous resource environments. Our results indicate that in temperate regions intra-colonial communication of resource locations benefits pollen foraging more than nectar foraging, irrespective of landscape heterogeneity. We conclude that the so far largely unexplored role of dance communication in pollen foraging requires further consideration as pollen is a crucial resource for colony development and health. KW - Apis mellifera KW - orientation KW - recruitment KW - landscape ecology KW - foraging behaviour KW - floral resource distribution Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170813 VL - 5 IS - e3441 ER - TY - JOUR A1 - Kato, Hiroki A1 - Lu, Qiping A1 - Rapaport, Doron A1 - Kozjak-Pavlovic, Vera T1 - Tom70 Is Essential for PINK1 Import into Mitochondria JF - PLoS ONE N2 - PTEN induced kinase 1 (PINK1) is a serine/threonine kinase in the outer membrane of mitochondria (OMM), and known as a responsible gene of Parkinson's disease (PD). The precursor of PINK1 is synthesized in the cytosol and then imported into the mitochondria via the translocase of the OMM (TOM) complex. However, a large part of PINK1 import mechanism remains unclear. In this study, we examined using cell-free system the mechanism by which PINK1 is targeted to and assembled into mitochondria. Surprisingly, the main component of the import channel, Tom40 was not necessary for PINK1 import. Furthermore, we revealed that the import receptor Tom70 is essential for PINK1 import. In addition, we observed that although PINK1 has predicted mitochondrial targeting signal, it was not processed by the mitochondrial processing peptidase. Thus, our results suggest that PINK1 is imported into mitochondria by a unique pathway that is independent of the TOM core complex but crucially depends on the import receptor Tom70. KW - binding KW - outer-membrane proteins KW - Parkinsons diesease KW - intracellular membranes KW - quality control KW - pathway KW - recruitment KW - biogenesis KW - mechanisms KW - complex Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131061 VL - 8 IS - 3 ER -