TY - JOUR A1 - Schmitz, Werner A1 - Ries, Elena A1 - Koderer, Corinna A1 - Völter, Maximilian Friedrich A1 - Wünsch, Anna Chiara A1 - El-Mesery, Mohamed A1 - Frackmann, Kyra A1 - Kübler, Alexander Christian A1 - Linz, Christian A1 - Seher, Axel T1 - Cysteine restriction in murine L929 fibroblasts as an alternative strategy to methionine restriction in cancer therapy JF - International Journal of Molecular Sciences N2 - Methionine restriction (MetR) is an efficient method of amino acid restriction (AR) in cells and organisms that induces low energy metabolism (LEM) similar to caloric restriction (CR). The implementation of MetR as a therapy for cancer or other diseases is not simple since the elimination of a single amino acid in the diet is difficult. However, the in vivo turnover rate of cysteine is usually higher than the rate of intake through food. For this reason, every cell can enzymatically synthesize cysteine from methionine, which enables the use of specific enzymatic inhibitors. In this work, we analysed the potential of cysteine restriction (CysR) in the murine cell line L929. This study determined metabolic fingerprints using mass spectrometry (LC/MS). The profiles were compared with profiles created in an earlier work under MetR. The study was supplemented by proliferation studies using D-amino acid analogues and inhibitors of intracellular cysteine synthesis. CysR showed a proliferation inhibition potential comparable to that of MetR. However, the metabolic footprints differed significantly and showed that CysR does not induce classic LEM at the metabolic level. Nevertheless, CysR offers great potential as an alternative for decisive interventions in general and tumour metabolism at the metabolic level. KW - methionine restriction KW - cysteine restriction KW - mass spectrometry KW - LC/MS KW - cancer therapy KW - caloric restriction KW - homocysteine KW - amino acid analogues KW - cysteine synthase inhibitor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265486 SN - 1422-0067 VL - 22 IS - 21 ER - TY - JOUR A1 - Koderer, Corinna A1 - Schmitz, Werner A1 - Wünsch, Anna Chiara A1 - Balint, Julia A1 - El-Mesery, Mohamed A1 - Volland, Julian Manuel A1 - Hartmann, Stefan A1 - Linz, Christian A1 - Kübler, Alexander Christian A1 - Seher, Axel T1 - Low energy status under methionine restriction is essentially independent of proliferation or cell contact inhibition JF - Cells N2 - Nonlimited proliferation is one of the most striking features of neoplastic cells. The basis of cell division is the sufficient presence of mass (amino acids) and energy (ATP and NADH). A sophisticated intracellular network permanently measures the mass and energy levels. Thus, in vivo restrictions in the form of amino acid, protein, or caloric restrictions strongly affect absolute lifespan and age-associated diseases such as cancer. The induction of permanent low energy metabolism (LEM) is essential in this process. The murine cell line L929 responds to methionine restriction (MetR) for a short time period with LEM at the metabolic level defined by a characteristic fingerprint consisting of the molecules acetoacetate, creatine, spermidine, GSSG, UDP-glucose, pantothenate, and ATP. Here, we used mass spectrometry (LC/MS) to investigate the influence of proliferation and contact inhibition on the energy status of cells. Interestingly, the energy status was essentially independent of proliferation or contact inhibition. LC/MS analyses showed that in full medium, the cells maintain active and energetic metabolism for optional proliferation. In contrast, MetR induced LEM independently of proliferation or contact inhibition. These results are important for cell behaviour under MetR and for the optional application of restrictions in cancer therapy. KW - methionine restriction KW - caloric restriction KW - mass spectrometry KW - LC/MS KW - liquid chromatography/mass spectrometry KW - metabolomics KW - L929 KW - amino acid KW - proliferation KW - contact inhibition Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262329 SN - 2073-4409 VL - 11 IS - 3 ER - TY - JOUR A1 - Volland, Julian Manuel A1 - Kaupp, Johannes A1 - Schmitz, Werner A1 - Wünsch, Anna Chiara A1 - Balint, Julia A1 - Möllmann, Marc A1 - El-Mesery, Mohamed A1 - Frackmann, Kyra A1 - Peter, Leslie A1 - Hartmann, Stefan A1 - Kübler, Alexander Christian A1 - Seher, Axel T1 - Mass spectrometric metabolic fingerprinting of 2-Deoxy-D-Glucose (2-DG)-induced inhibition of glycolysis and comparative analysis of methionine restriction versus glucose restriction under perfusion culture in the murine L929 model system JF - International Journal of Molecular Sciences N2 - All forms of restriction, from caloric to amino acid to glucose restriction, have been established in recent years as therapeutic options for various diseases, including cancer. However, usually there is no direct comparison between the different restriction forms. Additionally, many cell culture experiments take place under static conditions. In this work, we used a closed perfusion culture in murine L929 cells over a period of 7 days to compare methionine restriction (MetR) and glucose restriction (LowCarb) in the same system and analysed the metabolome by liquid chromatography mass spectrometry (LC-MS). In addition, we analysed the inhibition of glycolysis by 2-deoxy-D-glucose (2-DG) over a period of 72 h. 2-DG induced very fast a low-energy situation by a reduced glycolysis metabolite flow rate resulting in pyruvate, lactate, and ATP depletion. Under perfusion culture, both MetR and LowCarb were established on the metabolic level. Interestingly, over the period of 7 days, the metabolome of MetR and LowCarb showed more similarities than differences. This leads to the conclusion that the conditioned medium, in addition to the different restriction forms, substantially reprogramm the cells on the metabolic level. KW - amino acid restriction KW - glucose restriction KW - mass spectrometry KW - low carb KW - 2-deoxy-D-glucose KW - 2-DG KW - methionine KW - perfusion culture KW - energy restriction KW - caloric restriction Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286007 SN - 1422-0067 VL - 23 IS - 16 ER - TY - JOUR A1 - Schmitz, Werner A1 - Koderer, Corinna A1 - El-Mesery, Mohamed A1 - Gobik, Sebastian A1 - Sampers, Rene A1 - Straub, Anton A1 - Kübler, Alexander Christian A1 - Seher, Axel T1 - Metabolic fingerprinting of murine L929 fibroblasts as a cell-based tumour suppressor model system for methionine restriction JF - International Journal of Molecular Sciences N2 - Since Otto Warburg reported in 1924 that cancer cells address their increased energy requirement through a massive intake of glucose, the cellular energy level has offered a therapeutic anticancer strategy. Methionine restriction (MetR) is one of the most effective approaches for inducing low-energy metabolism (LEM) due to the central position in metabolism of this amino acid. However, no simple in vitro system for the rapid analysis of MetR is currently available, and this study establishes the murine cell line L929 as such a model system. L929 cells react rapidly and efficiently to MetR, and the analysis of more than 150 different metabolites belonging to different classes (amino acids, urea and tricarboxylic acid cycle (TCA) cycles, carbohydrates, etc.) by liquid chromatography/mass spectrometry (LC/MS) defines a metabolic fingerprint and enables the identification of specific metabolites representing normal or MetR conditions. The system facilitates the rapid and efficient testing of potential cancer therapeutic metabolic targets. To date, MS studies of MetR have been performed using organisms and yeast, and the current LC/MS analysis of the intra- and extracellular metabolites in the murine cell line L929 over a period of 5 days thus provides new insights into the effects of MetR at the cellular metabolic level. KW - methionine restriction KW - caloric restriction KW - mass spectrometry KW - LC/MS KW - liquid chromatography/mass spectrometry KW - metabolism KW - L929 KW - amino acid Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259198 SN - 1422-0067 VL - 22 IS - 6 ER - TY - JOUR A1 - Sanges, C. A1 - Scheuermann, C. A1 - Zahedi, R. P. A1 - Sickmann, A. A1 - Lamberti, A. A1 - Migliaccio, N. A1 - Baljuls, A. A1 - Marra, M. A1 - Zappavigna, S. A1 - Rapp, U. A1 - Abbruzzese, A. A1 - Caraglia, M. A1 - Arcari, P. T1 - Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells JF - Cell Death & Disease N2 - We identified eukaryotic translation elongation factor 1A (eEF1A) Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and of apoptosis of human cancer cells. Mass spectrometry identified in vitro S21 and T88 as phosphorylation sites mediated by B-Raf but not C-Raf on eEF1A1 whereas S21 was phosphorylated on eEF1A2 by both B-and C-Raf. Interestingly, S21 belongs to the first eEF1A GTP/GDP-binding consensus sequence. Phosphorylation of S21 was strongly enhanced when both eEF1A isoforms were preincubated prior the assay with C-Raf, suggesting that the eEF1A isoforms can heterodimerize thus increasing the accessibility of S21 to the phosphate. Overexpression of eEF1A1 in COS 7 cells confirmed the phosphorylation of T88 also in vivo. Compared with wt, in COS 7 cells overexpressed phosphodeficient (A) and phospho-mimicking (D) mutants of eEF1A1 (S21A/D and T88A/D) and of eEF1A2 (S21A/D), resulted less stable and more rapidly proteasome degraded. Transfection of S21 A/D eEF1A mutants in H1355 cells increased apoptosis in comparison with the wt isoforms. It indicates that the blockage of S21 interferes with or even supports C-Raf induced apoptosis rather than cell survival. Raf-mediated regulation of this site could be a crucial mechanism involved in the functional switching of eEF1A between its role in protein biosynthesis and its participation in other cellular processes. KW - signal transduction KW - mass spectrometry KW - elongation KW - protein docking KW - factor EEF1A2 KW - cancer-cells KW - lung cancer KW - EF-1A KW - Raf kinases KW - aminoacyl-transfer-RNA KW - tyrosine phosphorylation KW - factor 1-alpha KW - nucleotide exchange KW - polyarcylamide gels KW - chain KW - apoptosis KW - ubiquitin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134673 VL - 3 IS - e276 ER - TY - JOUR A1 - Sbirkov, Yordan A1 - Kwok, Colin A1 - Bhamra, Amandeep A1 - Thompson, Andrew J. A1 - Gil, Veronica A1 - Zelent, Arthur A1 - Petrie, Kevin T1 - Semi-quantitative mass spectrometry in AML cells identifies new non-genomic targets of the EZH2 methyltransferase JF - International Journal of Molecular Sciences N2 - Alterations to the gene encoding the EZH2 (KMT6A) methyltransferase, including both gain-of-function and loss-of-function, have been linked to a variety of haematological malignancies and solid tumours, suggesting a complex, context-dependent role of this methyltransferase. The successful implementation of molecularly targeted therapies against EZH2 requires a greater understanding of the potential mechanisms by which EZH2 contributes to cancer. One aspect of this effort is the mapping of EZH2 partner proteins and cellular targets. To this end we performed affinity-purification mass spectrometry in the FAB-M2 HL-60 acute myeloid leukaemia (AML) cell line before and after all-trans retinoic acid-induced differentiation. These studies identified new EZH2 interaction partners and potential non-histone substrates for EZH2-mediated methylation. Our results suggest that EZH2 is involved in the regulation of translation through interactions with a number of RNA binding proteins and by methylating key components of protein synthesis such as eEF1A1. Given that deregulated mRNA translation is a frequent feature of cancer and that eEF1A1 is highly expressed in many human tumours, these findings present new possibilities for the therapeutic targeting of EZH2 in AML. KW - acute myeloid leukaemia KW - EZH2 KW - mass spectrometry KW - methylation KW - eEF1A1 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285541 SN - 1422-0067 VL - 18 IS - 7 ER -