TY - JOUR A1 - Martin, Emily A. A1 - Reineking, Björn A1 - Seo, Bumsuk A1 - Steffan-Dewenter, Ingolf T1 - Pest control of aphids depends on landscape complexity and natural enemy interactions JF - PeerJ N2 - Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of aphid natural pest control. KW - insect populations KW - metaanalysis KW - biodiversity-ecosystem functioning KW - cabbage Brassica oleracea var. capitata KW - proportion of seminatural habitat KW - South Korea KW - land use intensification KW - trophic interactions KW - agroecosystems KW - biological control KW - agricultural landscapes KW - pest KW - biodiversity KW - herbivores Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148393 VL - 3 IS - e1095 ER - TY - JOUR A1 - Loos, Jacqueline A1 - Krauss, Jochen A1 - Lyons, Ashley A1 - Föst, Stephanie A1 - Ohlendorf, Constanze A1 - Racky, Severin A1 - Röder, Marina A1 - Hudel, Lennart A1 - Herfert, Volker A1 - Tscharntke, Teja T1 - Local and landscape responses of biodiversity in calcareous grasslands JF - Biodiversity and Conservation N2 - Across Europe, calcareous grasslands become increasingly fragmented and their quality deteriorates through abandonment and land use intensification, both affecting biodiversity. Here, we investigated local and landscape effects on diversity patterns of several taxonomic groups in a landscape of highly fragmented calcareous grassland remnants. We surveyed 31 grassland fragments near Göttingen, Germany, in spring and summer 2017 for vascular plants, butterflies and birds, with sampling effort adapted to fragment area. Through regression modelling, we tested relationships between species richness and fragment size (from 314 to 51,395 m\(^2\)), successional stage, habitat connectivity and the per cent cover of arable land in the landscape at several radii. We detected 283 plant species, 53 butterfly species and 70 bird species. Of these, 59 plant species, 19 butterfly species and 9 bird species were grassland specialists. Larger fragments supported twice the species richness of plants than small ones, and hosted more species of butterflies, but not of birds. Larger grassland fragments contained more grassland specialist plants, but not butterfly or bird specialists. Increasing amounts of arable land in the landscape from 20 to 90% was related to the loss of a third of species of plants, and less so, of butterflies, but not of birds. Per cent cover of arable land negatively correlated to richness of grassland specialist plants and butterflies, but positively to grassland specialist birds. We found no effect by successional stages and habitat connectivity. Our multi-taxa approach highlights the need for conservation management at the local scale, complemented by measures at the landscape scale. KW - abandonment KW - birds KW - butterflies KW - land use intensification KW - nature conservation KW - vascular plants Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-308595 SN - 0960-3115 SN - 1572-9710 VL - 30 IS - 8-9 ER -