TY - JOUR A1 - Hempelmann, Alexander A1 - Hartleb, Laura A1 - van Straaten, Monique A1 - Hashemi, Hamidreza A1 - Zeelen, Johan P. A1 - Bongers, Kevin A1 - Papavasiliou, F. Nina A1 - Engstler, Markus A1 - Stebbins, C. Erec A1 - Jones, Nicola G. T1 - Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome JF - Cell Reports N2 - The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host’s antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells. KW - African trypanosome KW - host-pathogen interaction KW - variant surface glycoproteins KW - immune epitope mapping KW - structural biology KW - nanovesicle formation KW - nanotube formation KW - protein crowding KW - membrane fission Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270285 VL - 37 IS - 5 ER - TY - JOUR A1 - Schuster, Sarah A1 - Krüger, Timothy A1 - Subota, Ines A1 - Thusek, Sina A1 - Rotureau, Brice A1 - Beilhack, Andreas A1 - Engstler, Markus T1 - Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system JF - eLife N2 - The highly motile and versatile protozoan pathogen Trypanosoma brucei undergoes a complex life cycle in the tsetse fly. Here we introduce the host insect as an expedient model environment for microswimmer research, as it allows examination of microbial motion within a diversified, secluded and yet microscopically tractable space. During their week-long journey through the different microenvironments of the fly´s interior organs, the incessantly swimming trypanosomes cross various barriers and confined surroundings, with concurrently occurring major changes of parasite cell architecture. Multicolour light sheet fluorescence microscopy provided information about tsetse tissue topology with unprecedented resolution and allowed the first 3D analysis of the infection process. High-speed fluorescence microscopy illuminated the versatile behaviour of trypanosome developmental stages, ranging from solitary motion and near-wall swimming to collective motility in synchronised swarms and in confinement. We correlate the microenvironments and trypanosome morphologies to high-speed motility data, which paves the way for cross-disciplinary microswimmer research in a naturally evolved environment. KW - none KW - tsetse fly KW - Trypanosoma KW - biophysics KW - microswimmer KW - sleeping sickness KW - structural biology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158662 VL - 6 ER -