TY - JOUR A1 - Steijven, Karin A1 - Spaethe, Johannes A1 - Steffan-Dewenter, Ingolf A1 - Härtel, Stephan T1 - Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food JF - PeerJ N2 - Background Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab) bees in comparison with their in-hive reared counterparts. Methods Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees. Results Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB) lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control. Discussion We have demonstrated that bees that are reared artificially (according to the Aupinel protocol) and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus subsequent behavioral and neuro-anatomic analyses is a powerful tool for basic and applied honey bee research. KW - nutrition KW - cognition KW - neuroanatomy KW - differential olfactory conditioning KW - mushroom bodies KW - proboscis extension reflex KW - confocal laser scanning microscopy KW - Apis mellifera KW - brain development KW - morphometry Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170137 VL - 5 IS - e3858 ER - TY - JOUR A1 - Requier, Fabrice A1 - Paillet, Yoan A1 - Laroche, Fabienne A1 - Rutschmann, Benjamin A1 - Zhang, Jie A1 - Lombardi, Fabio A1 - Svoboda, Miroslav A1 - Steffan-Dewenter, Ingolf T1 - Contribution of European forests to safeguard wild honeybee populations JF - Conservation Letters N2 - Abstract Recent studies reveal the use of tree cavities by wild honeybee colonies in European forests. This highlights the conservation potential of forests for a highly threatened component of the native entomofauna in Europe, but currently no estimate of potential wild honeybee population sizes exists. Here, we analyzed the tree cavity densities of 106 forest areas across Europe and inferred an expected population size of wild honeybees. Both forest and management types affected the density of tree cavities. Accordingly, we estimated that more than 80,000 wild honeybee colonies could be sustained in European forests. As expected, potential conservation hotspots were identified in unmanaged forests, and, surprisingly, also in other large forest areas across Europe. Our results contribute to the EU policy strategy to halt pollinator declines and reveal the potential of forest areas for the conservation of so far neglected wild honeybee populations in Europe. KW - Apis mellifera KW - Conservation KW - forest management KW - honeybees KW - native populations KW - protected forests KW - tree cavities KW - unmanaged broadleaved forests Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204407 VL - 13 IS - 2 ER - TY - JOUR A1 - Nürnberger, Fabian A1 - Steffan-Dewenter, Ingolf A1 - Härtel, Stephan T1 - Combined effects of waggle dance communication and landscape heterogeneity on nectar and pollen uptake in honey bee colonies JF - PeerJ N2 - The instructive component of waggle dance communication has been shown to increase resource uptake of Apis mellifera colonies in highly heterogeneous resource environments, but an assessment of its relevance in temperate landscapes with different levels of resource heterogeneity is currently lacking. We hypothesized that the advertisement of resource locations via dance communication would be most relevant in highly heterogeneous landscapes with large spatial variation of floral resources. To test our hypothesis, we placed 24 Apis mellifera colonies with either disrupted or unimpaired instructive component of dance communication in eight Central European agricultural landscapes that differed in heterogeneity and resource availability. We monitored colony weight change and pollen harvest as measure of foraging success. Dance disruption did not significantly alter colony weight change, but decreased pollen harvest compared to the communicating colonies by 40%. There was no general effect of resource availability on nectar or pollen foraging success, but the effect of landscape heterogeneity on nectar uptake was stronger when resource availability was high. In contrast to our hypothesis, the effects of disrupted bee communication on nectar and pollen foraging success were not stronger in landscapes with heterogeneous compared to homogenous resource environments. Our results indicate that in temperate regions intra-colonial communication of resource locations benefits pollen foraging more than nectar foraging, irrespective of landscape heterogeneity. We conclude that the so far largely unexplored role of dance communication in pollen foraging requires further consideration as pollen is a crucial resource for colony development and health. KW - Apis mellifera KW - orientation KW - recruitment KW - landscape ecology KW - foraging behaviour KW - floral resource distribution Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170813 VL - 5 IS - e3441 ER -