TY - JOUR A1 - Peters, Simon A1 - Kaiser, Lena A1 - Fink, Julian A1 - Schumacher, Fabian A1 - Perschin, Veronika A1 - Schlegel, Jan A1 - Sauer, Markus A1 - Stigloher, Christian A1 - Kleuser, Burkhard A1 - Seibel, Juergen A1 - Schubert-Unkmeir, Alexandra T1 - Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria JF - Scientific Reports N2 - Sphingolipids, including ceramides, are a diverse group of structurally related lipids composed of a sphingoid base backbone coupled to a fatty acid side chain and modified terminal hydroxyl group. Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we introduce 'click-AT-CLEM', a labeling technique for correlated light and electron microscopy (CLEM) based on the super-resolution array tomography (srAT) approach and bio-orthogonal click chemistry for imaging of azido-tagged sphingolipids to directly visualize their interaction with the model Gram-negative bacterium Neisseria meningitidis at subcellular level. We observed ultrastructural damage of bacteria and disruption of the bacterial outer membrane induced by two azido-modified sphingolipids by scanning electron microscopy and transmission electron microscopy. Click-AT-CLEM imaging and mass spectrometry clearly revealed efficient incorporation of azido-tagged sphingolipids into the outer membrane of Gram-negative bacteria as underlying cause of their antimicrobial activity. KW - antimicrobials KW - biological techniques KW - imaging KW - microbiology KW - microbiology techniques KW - microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259147 VL - 11 IS - 1 ER - TY - JOUR A1 - Nanguneri, Siddharth A1 - Flottmann, Benjamin A1 - Horstmann, Heinz A1 - Heilemann, Mike A1 - Kuner, Thomas T1 - Three-Dimensional, Tomographic Super-Resolution Fluorescence Imaging of Serially Sectioned Thick Samples JF - PLoS One N2 - Three-dimensional fluorescence imaging of thick tissue samples with near-molecular resolution remains a fundamental challenge in the life sciences. To tackle this, we developed tomoSTORM, an approach combining single-molecule localization-based super-resolution microscopy with array tomography of structurally intact brain tissue. Consecutive sections organized in a ribbon were serially imaged with a lateral resolution of 28 nm and an axial resolution of 40 nm in tissue volumes of up to 50 \(\mu\)mx50\(\mu\)mx2.5\(\mu\)m. Using targeted expression of membrane bound (m)GFP and immunohistochemistry at the calyx of Held, a model synapse for central glutamatergic neurotransmission, we delineated the course of the membrane and fine-structure of mitochondria. This method allows multiplexed super-resolution imaging in large tissue volumes with a resolution three orders of magnitude better than confocal microscopy. KW - architecture KW - rat calyx KW - in-vivo KW - microscopy KW - resolution KW - proteins KW - transmission KW - ultrastructure KW - reconstruction KW - localization Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134434 VL - 7 IS - 5 ER - TY - THES A1 - Kuhlemann, Alexander T1 - Bioorthogonal labeling of neuronal proteins using super-resolution fluorescence microscopy T1 - Bioorthogonale Markierung von neuronalen Proteinen mittels hochauflösender Fluoreszenzmikroskopie N2 - The synaptic cleft is of central importance for synaptic transmission, neuronal plasticity and memory and thus well studied in neurobiology. To target proteins of interest with high specificity and strong signal to noise conventional immunohistochemistry relies on the use of fluorescently labeled antibodies. However, investigations on synaptic receptors remain challenging due to the defined size of the synaptic cleft of ~20 nm between opposing pre- and postsynaptic membranes. At this limited space, antibodies bear unwanted side effects such as crosslinking, accessibility issues and a considerable linkage error between fluorophore and target of ~10 nm. With recent single molecule localization microscopy (SMLM) methods enabling localization precisions of a few nanometers, the demand for labeling approaches with minimal linkage error and reliable recognition of the target molecules rises. Within the scope of this work, different labeling techniques for super-resolution fluorescence microscopy were utilized allowing site-specific labeling of a single amino acid in synaptic proteins like kainate receptors (KARs), transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor regulatory proteins (TARPs), γ-aminobutyric acid type A receptors (GABA-ARs) and neuroligin 2 (NL2). The method exploits the incorporation of unnatural amino acids (uAAs) in the protein of interest using genetic code expansion (GCE) via amber suppression technology and subsequent labeling with tetrazine functionalized fluorophores. Implementing this technique, hard-to-target proteins such as KARs, TARPs and GABA-ARs could be labeled successfully, which could only be imaged insufficiently with conventional labeling approaches. Furthermore, functional studies involving electrophysiological characterization, as well as FRAP and FRET experiments validated that incorporation of uAAs maintains the native character of the targeted proteins. Next, the method was transferred into primary hippocampal neurons and in combination with super-resolution microscopy it was possible to resolve the nanoscale organization of γ2 and γ8 TARPs. Cluster analysis of dSTORM localization data verified synaptic accumulation of γ2, while γ8 was homogenously distributed along the neuron. Additionally, GCE and bioorthogonal labeling allowed visualization of clickable GABA-A receptors located at postsynaptic compartments in dissociated hippocampal neurons. Moreover, saturation experiments and FRET imaging of clickable multimeric receptors revealed successful binding of multiple tetrazine functionalized fluorophores to uAA-modified dimeric GABA-AR α2 subunits in close proximity (~5 nm). Further utilization of tetrazine-dyes via super-resolution microscopy methods such as dSTORM and click-ExM will provide insights to subunit arrangement in receptors in the future. This work investigated the nanoscale organization of synaptic proteins with minimal linkage error enabling new insights into receptor assembly, trafficking and recycling, as well as protein-protein interactions at synapses. Ultimately, bioorthogonal labeling can help to understand pathologies such as the limbic encephalitis associated with GABA-AR autoantibodies and is already in application for cancer therapies. N2 - Der synaptische Spalt ist von zentraler Bedeutung für die synaptische Reizweiterleitung, neuronale Plastizität und Gedächtnis und dadurch neurobiologisch sehr gut charakterisiert. Um Zielproteine mit hoher Spezifität und einem guten Signal-zu-Rauschen Verhältnis zu adressieren, wird konventionell auf Immunhistochemie mittels Fluoreszenzfarbstoff-markierter Antikörper zurückgegriffen. Untersuchungen synaptischer Rezeptoren bleiben dabei jedoch aufgrund der limitierten Zugänglichkeit des synaptischen Spalts mit einem Abstand von ~20 nm zwischen gegenüberliegenden pre- und postsynaptischen Membranen herausfordernd. Speziell in einem räumlich begrenzten Umfeld können bei der Verwendung von Antikörpern unerwünschte Artefakte auftreten, die durch Kreuzverlinkung, eine verminderte Zugänglichkeit und einen erheblichen Markierungsabstand zwischen Fluorophor und Probe von ~10 nm entstehen. Aktuelle Verfahren der Einzelmolekül-Lokalisations-Mikroskopie (SMLM), die eine Lokalisationsgenauigkeit von wenigen Nanometern ermöglichen, erhöhen die Nachfrage an Markierungsstrategien mit minimalem Markierungsabstand und zuverlässiger Erkennung der Zielstruktur. Im Rahmen dieser Arbeit wurden daher verschiedene Markierungsmethoden für die hochauflösende Fluoreszenz-Mikroskopie erprobt. Dies ermöglichte die ortsspezifische Markierung einer einzigen Aminosäure in synaptischen Proteinen wie Kainat-Rezeptoren (KARs), Transmembran-α-Amino-3-hydroxy-5-methyl-4-isoxazol-Propionsäure-Rezeptor regulierenden Proteinen (TARPs), γ-Aminobuttersäure-Typ-A-Rezeptoren (GABA-ARs) oder Neuroligin 2 (NL2). Die angewandte Methodik nutzt den Einbau von unnatürlichen Aminosäuren (uAAs) in das Zielprotein mittels Erweiterung des genetischen Codes (GCE) durch Unterdrückung des Amber-Stop-Codons. Durch Anwendung dieser Strategie gelang es, schwer adressierbare Proteine wie KARs, TARPs und GABA-ARs, welche zuvor mittels konventioneller Markierungsversuche nur unzureichend abgebildet werden konnten, erfolgreich zu markieren. Funktionelle Studien wie elektrophysiologische Charakterisierungen, aber auch FRAP und FRET Experimente zeigten, dass dabei der native Zustand der Zielproteine auch nach dem Einbau von uAAs erhalten bleibt. Schließlich wurde die Methode in primäre hippocampale Neuronen überführt und in Kombination mit hochauflösender Mikroskopie konnte die Organisation von γ2 und γ8 TARPs im Nanobereich aufgelöst werden. Eine Cluster-Analyse von dSTORM Lokalisationsdaten bestätigte die Anreicherung von γ2 in Synapsen, während γ8 homogen entlang des Neurons verteilt vorliegt. Die Erweiterung des genetischen Codes in Kombination mit bioorthogonaler Markierung erlaubte zusätzlich die Visualisierung von clickbaren GABA-A Rezeptoren in Postsynapsen von dissoziierten hippocampalen Neuronen. Außerdem zeigten Saturierungs-Experimente und FRET-Bildgebung die erfolgreiche Bindung von mehreren Tetrazin-gekoppelten Fluorophoren an uAA-modifizierten, dimerischen GABA-AR α2-Untereinheiten in geringem Abstand (~5 nm). Auf der Basis dieser Resultate werden zukünftig hochauflösende mikroskopische Verfahren, wie dSTORM und click-ExM, in Kombination mit Tetrazin-Farbstoffen die Visualisierung von multimerischen Rezeptoren ermöglichen. Im Rahmen dieser Arbeit konnte die Organisation von synaptischen Proteinen mit minimalem Markierungsabstand im Nanobereich untersucht werden und dadurch neue Einsichten in Rezeptor-Zusammenbau, -Bewegungen und -Wiederverwertung, aber auch Protein-Protein Interaktionen in Synapsen gewonnen werden. Die Weiterentwicklung bioorthogonaler Markierungsstrategien kann in Zukunft dazu beitragen Krankheiten, wie die Limbische Enzephalitis, welche mit GABA-AR Autoantikörpern in Verbindung steht, besser zu verstehen und findet zudem bereits heute Anwendung in Krebstherapien. KW - microscopy KW - bioorthogonal labeling KW - super-resolution fluorescence microscopy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-243731 ER - TY - JOUR A1 - Grimm, Jonathan B. A1 - Klein, Teresa A1 - Kopek, Benjamin G. A1 - Shtengel, Gleb A1 - Hess, Harald F. A1 - Sauer, Markus A1 - Lavis, Luke D. T1 - Synthesis of a far-red photoactivatable silicon-containing rhodamine for super-resolution microscopy JF - Angewandte Chemie International Edition N2 - The rhodamine system is a flexible framework for building small‐molecule fluorescent probes. Changing N‐substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si‐containing analogue of Q‐rhodamine. This probe is the first example of a “caged” Si‐rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red‐shifted to allow multicolor imaging. The dye is a useful label for super‐resolution imaging and constitutes a new scaffold for far‐red fluorogenic molecules. KW - fluorophore KW - microscopy KW - photoactivation KW - Si-rhodamine KW - super-resolution imaging Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191069 VL - 55 IS - 5 ER -