TY - THES A1 - Markert, Sebastian Matthias T1 - Enriching the understanding of synaptic architecture from single synapses to networks with advanced imaging techniques T1 - Vertiefung des Verständnisses synaptischer Architektur von der einzelnen Synapse bis zum Netzwerk mit modernsten bildgebenden Verfahren N2 - Because of its complexity and intricacy, studying the nervous system is often challenging. Fortunately, the small nematode roundworm Caenorhabditis elegans is well established as a model system for basic neurobiological research. The C. elegans model is also the only organism with a supposedly complete connectome, an organism-wide map of synaptic connectivity resolved by electron microscopy, which provides some understanding of how the nervous system works as a whole. However, the number of available data-sets is small and the connectome contains errors and gaps. One example of this concerns electrical synapses. Electrical synapses are formed by gap junctions and difficult to map due to their often ambiguous morphology in electron micrographs, leading to misclassification or omission. On the other hand, chemical synapses are more easily mapped, but many aspects of their mode of operation remain elusive and their role in the C. elegans connectome is oversimplified. A comprehensive understanding of signal transduction of neurons between each other and other cells will be indispensable for a comprehensive understanding of the nervous system. In this thesis, I approach these challenges with a combination of advanced light and electron microscopy techniques. First, this thesis describes a strategy to increase synaptic specificity in connectomics. Specifically, I classify gap junctions with a high degree of confidence. To achieve this, I utilized array tomography (AT). In this thesis, AT is adapted for high-pressure freezing to optimize for structure preservation and for super-resolution light microscopy; in this manner, I aim to bridge the gap between light and electron microscopy resolutions. I call this adaptation super-resolution array tomography (srAT). The srAT approach made it possible to clearly identify and map gap junctions with high precision and accuracy. The results from this study showcased the feasibility of incorporating electrical synapses into connectomes in a systematic manner, and subsequent studies have used srAT for other models and questions. As mentioned above, the C. elegans connectomic model suffers from a shortage of datasets. For most larval stages, including the special dauer larval stage, connectome data is completely missing up to now. To obtain the first partial connectome data-set of the C. elegans dauer larva, we used focused ion-beam scanning electron microscopy (FIB-SEM). This technique offers an excellent axial resolution and is useful for acquiring large volumes for connectomics. Together with our collaborators, I acquired several data-sets which enable the analysis of dauer stage-specific “re-wiring” of the nervous system and thus offer valuable insights into connectome plasticity/variability. While chemical synapses are easy to map relative to electrical synapses, signal transduction via chemical transmitters requires a large number of different proteins and molecular processes acting in conjunction in a highly constricted space. Because of the small spatial scale of the synapse, investigating protein function requires very high resolution, which electron tomography provides. I analyzed electron tomograms of a worm-line with a mutant synaptic protein, the serine/threonine kinase SAD-1, and found remarkable alterations in several architectural features. My results confirm and re-contextualize previous findings and provide new insight into the functions of this protein at the chemical synapse. Finally, I investigated the effectiveness of our methods on “malfunctioning,” synapses, using an amyotrophic lateral sclerosis (ALS) model. In the putative synaptopathy ALS, the mechanisms of motor neuron death are mostly unknown. However, mutations in the gene FUS (Fused in Sarcoma) are one known cause of the disease. The expression of the mutated human FUS in C. elegans was recently shown to produce an ALS-like phenotype in the worms, rendering C. elegans an attractive disease model for ALS. Together with our collaboration partners, I applied both srAT and electron tomography methods to “ALS worms” and found effects on vesicle docking. These findings help to explain electrophysiological recordings that revealed a decrease in frequency of mini excitatory synaptic currents, but not amplitudes, in ALS worms compared to controls. In addition, synaptic endosomes appeared larger and contained electron-dense filaments in our tomograms. These results substantiate the idea that mutated FUS impairs vesicle docking and also offer new insights into further molecular mechanisms of disease development in FUS-dependent ALS. Furthermore, we demonstrated the broader applicability of our methods by successfully using them on cultured mouse motor neurons. Overall, using the C. elegans model and a combination of light and electron microscopy methods, this thesis helps to elucidate the structure and function of neuronal synapses, towards the aim of obtaining a comprehensive model of the nervous system. N2 - Das Nervensystem ist ein definierendes Merkmal aller Tiere, unter anderem verantwortlich für Sinneswahrnehmung, Bewegung und „höhere“ Hirnfunktionen. Wegen dessen Komplexität und Feingliedrigkeit stellt das Erforschen des Nervensystems oft eine Herausforderung dar. Jedoch ist der kleine Fadenwurm Caenorhabditis elegans als Modellsystem für neurobiologische Grundlagenforschung gut etabliert. Erbesitzt eines der kleinsten und unveränderlichsten bekannten Nervensysteme. C.elegans ist auch das einzige Modell, für das ein annähernd vollständiges Konnektom vorliegt, eine durch Elektronenmikroskopie erstellte Karte der synaptischen Verbindungen eines gesamten Organismus, die Einblicke in die Funktionsweise des Nervensystems als Ganzes erlaubt. Allerdings ist die Anzahl der verfügbaren Datensätze gering und das Konnektom enthält Fehler und Lücken. Davon sind beispielsweise elektrische Synapsen betroffen. Elektrische Synapsen werden von Gap Junctions gebildet und sind auf Grund ihrer oft uneindeutigen Morphologie in elektronenmikroskopischen Aufnahmen schwierig zu kartieren, was dazu führt, dass einige falsch klassifiziert oder übersehen werden. Chemische Synapsen sind dagegen einfacher zu kartieren, aber viele Aspekte ihrer Funktionsweise sind schwer zu erfassen und ihre Rolle im Konnektom von C.elegans ist daher zu vereinfacht dargestellt. Ein umfassendes Verständnis der Signaltransduktion von Neuronen untereinander und zu anderen Zellen wird Voraussetzung für ein vollständiges Erfassen des Nervensystems sein. In der vorliegenden Arbeit gehe ich diese Herausforderungen mithilfe einer Kombination aus modernsten licht- und elektronenmikroskopischen Verfahren an. Zunächst beschreibt diese Arbeit eine Strategie, um die synaptische Spezifität in der Konnektomik zu erhöhen, indem ich Gap Junctions mit einem hohen Maß an Genauigkeit klassifiziere. Um dies zu erreichen, nutzte ich array tomography (AT), eine Technik, die Licht- und Elektronenmikrokopie miteinander korreliert. In dieser Arbeit wird AT adaptiert für Hochdruckgefrierung, um die Strukturerhaltung zu optimieren, sowie für ultrahochauflösende Lichtmikroskopie; so wird die Kluft zwischen den Auflösungsbereichen von Licht- und Elektronenmikroskopie überbrückt. Diese Adaption nenne ich super-resolution array tomography (srAT). Der srATAnsatz machte es möglich, Gap Junctions mit hoher Präzision und Genauigkeit klar zu identifizieren. Für diese Arbeit konzentrierte ich mich dabei auf Gap Junctions des retrovesikulären Ganglions von C.elegans. Die Ergebnisse dieser Studie veranschaulichen, wie es möglich wäre, elektrische Synapsen systematisch in Konnektome aufzunehmen. Nachfolgende Studien haben srAT auch auf andere Modelle und Fragestellungen angewandt ... KW - Caenorhabditis elegans KW - Synapse KW - Elektronenmikroskopie KW - Myatrophische Lateralsklerose KW - connectomics KW - focused ion-beam scanning electron microscopy KW - super-resolution array tomography Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189935 ER - TY - THES A1 - Kaltdorf [geb. Schuch], Kristin Verena T1 - Mikroskopie, Bildverarbeitung und Automatisierung der Analyse von Vesikeln in \(C.\) \(elegans\) und anderen biologischen Strukturen T1 - Microscopy, Image Processing and Automization of Analysis of Vesicles in \(C.\) \(elegans\) and other biological Structures N2 - Thema dieser Thesis ist die Analyse sekretorischer Vesikelpools auf Ultrastrukturebene in unterschiedlichen biologischen Systemen. Der erste und zweite Teil dieser Arbeit fokussiert sich auf die Analyse synaptischer Vesikelpools in neuromuskulären Endplatten (NME) im Modellorganismus Caenorhabditis elegans. Dazu wurde Hochdruckgefrierung und Gefriersubstitution angewandt, um eine unverzügliche Immobilisation der Nematoden und somit eine Fixierung im nahezu nativen Zustand zu gewährleisten. Anschließend wurden dreidimensionale Aufnahmen der NME mittels Elektronentomographie erstellt. Im ersten Teil dieser Arbeit wurden junge adulte, wildtypische C. elegans Hermaphroditen mit Septin-Mutanten verglichen. Um eine umfassende Analyse mit hoher Stichprobenzahl zu ermöglichen und eine automatisierte Lösung für ähnliche Untersuchungen von Vesikelpools bereit zu stellen wurde eine Software namens 3D ART VeSElecT zur automatisierten Vesikelpoolanalyse entwickelt. Die Software besteht aus zwei Makros für ImageJ, eines für die Registrierung der Vesikel und eines zur Charakterisierung. Diese Trennung in zwei separate Schritte ermöglicht einen manuellen Verbesserungsschritt zum Entfernen falsch positiver Vesikel. Durch einen Vergleich mit manuell ausgewerteten Daten neuromuskulärer Endplatten von larvalen Stadien des Modellorganismus Zebrafisch (Danio rerio) konnte erfolgreich die Funktionalität der Software bewiesen werden. Die Analyse der neuromuskulären Endplatten in C. elegans ergab kleinere synaptische Vesikel und dichtere Vesikelpools in den Septin-Mutanten verglichen mit Wildtypen. Im zweiten Teil der Arbeit wurden neuromuskulärer Endplatten junger adulter C. elegans Hermaphroditen mit Dauerlarven verglichen. Das Dauerlarvenstadium ist ein spezielles Stadium, welches durch widrige Umweltbedingungen induziert wird und in dem C. elegans über mehrere Monate ohne Nahrungsaufnahme überleben kann. Da hier der Vergleich der Abundanz zweier Vesikelarten, der „clear-core“-Vesikel (CCV) und der „dense-core“-Vesikel (DCV), im Fokus stand wurde eine Erweiterung von 3D ART VeSElecT entwickelt, die einen „Machine-Learning“-Algorithmus zur automatisierten Klassifikation der Vesikel integriert. Durch die Analyse konnten kleinere Vesikel, eine erhöhte Anzahl von „dense-core“-Vesikeln, sowie eine veränderte Lokalisation der DCV in Dauerlarven festgestellt werden. Im dritten Teil dieser Arbeit wurde untersucht ob die für synaptische Vesikelpools konzipierte Software auch zur Analyse sekretorischer Vesikel in Thrombozyten geeignet ist. Dazu wurden zweidimensionale und dreidimensionale Aufnahmen am Transmissionselektronenmikroskop erstellt und verglichen. Die Untersuchung ergab, dass hierfür eine neue Methodik entwickelt werden muss, die zwar auf den vorherigen Arbeiten prinzipiell aufbauen kann, aber den besonderen Herausforderungen der Bilderkennung sekretorischer Vesikel aus Thrombozyten gerecht werden muss. N2 - Subject of this thesis was the analysis of the ultrastructure of vesicle pools in various biological systems. The first and second part of this thesis is focused on the analysis of synaptic vesicle pools in neuromuscular junctions in the model organism Caenorhabditis elegans. In order to get access of synaptic vesicle pools in their near-to native state high-pressure freezing and freeze substitution was performed. Subsequently three-dimensional imaging of neuromuscular junctions using electron tomography was performed. In the first part young adult wild-type C. elegans hermaphrodites and septin mutants were compared. To enable extensive analysis and to provide an automated solution for comparable studies, a software called 3D ART VeSElecT for automated vesicle pool analysis, was developed. The software is designed as two macros for ImageJ, one for registration of vesicles and one for characterization. This separation allows for a manual revision step in between to erase false positive particles. Through comparison with manually evaluated data of neuromuscular junctions of larval stages of the model organism zebrafish (Danio rerio), functionality of the software was successfully proved. As a result, analysis of C. elegans neuromuscular junctions revealed smaller synaptic vesicles and more densely packed vesicle pools in septin mutants compared to wild-types. In the second part of this thesis NMJs of young adult C. elegans hermaphrodites were compared with dauer larvae. The dauer larva is a special state that is induced by adverse environmental conditions and enables C. elegans to survive several months without any foot uptake. Aiming for an automated analysis of the ratio of two vesicle types, clear core vesicles (CCVs) and dense core vesicles (DCVs), an extension for 3D ART VeSElecT was developed, integrating a machine-learning classifier. As a result, smaller vesicles and an increased amount of dense core vesicles in dauer larvae were found. In the third part of this thesis the developed software, designed for the analysis of synaptic vesicle pools, was checked for its suitability to recognize secretory vesicles in thrombocytes. Therefore, two-dimensional and three-dimensional transmission electron microscopic images were prepared and compared. The investigation has shown that a new methodology has to be developed which, although able to build on the previous work in principle, must meet the special challenges of image recognition of secretory vesicles from platelets. KW - Mikroskopie KW - Bildverarbeitung KW - Registrierung KW - Synaptische Vesikel KW - Bildanalyse KW - Automatisierung der Analyse KW - Automated Image Analysis KW - Caenorhabditis elegans KW - Electron Microscopy KW - Elektronenmikroskopie KW - Caenorhabditis elegans KW - automatisierte Bildanalyse Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160621 ER - TY - THES A1 - Dippacher, Sonja T1 - Morphologische und molekularbiologische Untersuchungen zur Bedeutung der Serin-Threonin-Proteinkinase SRPK79D in Drosophila melanogaster T1 - Morphological and molecular biological investigations on the role of serine threonine kinase SRPK779D in Drosophila melanogaster N2 - Die intakte Signalübertragung im animalischen Nervensystem erfordert eine an richtiger Stelle ausgebildete funktionsfähige Synapse zwischen zwei Nervenzellen bzw. zwischen Nerv und Muskel. In der vorliegenden Arbeit wurde eine Mutante von Drosophila melanogaster untersucht, bei der es zu Veränderungen der Verteilung eines wichtigen Organisationsproteins der synaptischen aktiven Zone kommt. Ein wichtiges Ergebnis der Untersuchungen ist die Beobachtung, dass es in der Mutante zu einer ektopen Ausbildung von Elementen aktiver Zonen in Axonen kommt. In den Arbeitsgruppen von E. Buchner und S. Sigrist ist bereits das Protein Bruchpilot (BRP) charakterisiert worden, das Bestandteil der präsynaptischen Ribbons, bei Drosophila als T-bars bezeichnet, ist. Bei der Suche nach Interaktionspartnern von BRP, ist eine Serin-Arginin-Protein spezifische Kinase SRPK79D entdeckt worden, die offenbar an der Regulation des Aufbaus der Tbars beteiligt ist (Nieratschker et al., 2009). Es gibt vier verschiedene Isoformen der Kinase. Werden nur zwei Isoformen der Kinase (SRPK79D-RB und -RE) exprimiert bzw. das Gen der Kinase komplett ausgeschaltet, findet man Ansammlungen von BRP als immunreaktive Aggregate in der Immunfluoreszenz- Färbung von larvalen Motoneuron-Axonen (Nieratschker, 2008). Es ist unser übergeordnetes Ziel, die Funktion und den molekularen Signalweg der Kinase SRPK79D zu entschlüsseln. Ein Ziel der vorliegenden Arbeit war es, PB-Protein in Reinform für eine Affinitätsreinigung eines PB-Antikörpers zu gewinnen, um in nachfolgenden Untersuchungen die Lokalisation dieser Kinase-Isoform zu untersuchen. Die Proteinreinigung war erfolgreich, aber es gelang nicht, eine für eine Affinitätsreinigung ausreichende Menge des Proteins zu isolieren. Ein weiterer Versuch, Lokalisationsuntersuchungen zur Expression der Kinase in Drosophila- Embryonen durchzuführen, war ebenfalls nicht erfolgreich. Obwohl die Herstellung einer für die SRPK79D mRNA spezifischen RNA Sonde für die in-Situ-Hybridisierung gelang, war die Sensitivität dieser Sonde nicht hoch genug, um die Lokalisation vornehmen zu können. Eindeutige und aufschlussreiche Ergebnisse dagegen ergab die Untersuchung der Ultrastruktur der BRP-Ansammlungen in den larvalen Motornerven. Als deren Korrelat fanden sich elektronenmikroskopisch charakteristische Ansammlungen elektronendichter intraaxonaler Strukturen, deren Form Ähnlichkeiten zu T-bars aufwies und die von Vesikeln umgeben waren. Die elektronendichten Strukturen zeigten zahlreiche Formvariationen, die wie Ansammlungen von T-bars nebeneinander bzw. „miteinander verklebte“ T-bars oder wie zerstörte T-bars aussahen. In einer nachfolgenden Studie wurde durch eine immun-elektronenmikroskopische Untersuchung gezeigt, dass diese Strukturen in der Tat BRP enthalten (Nieratschker et al., 2009). Ergebnis der Untersuchungen der vorliegenden Arbeit war der Nachweis, dass prinzipiell ähnliche Aggregate auch im Wildtyp gelegentlich gefunden werden, dass sie aber in Mutanten signifikant häufiger vorkommen und auch einen signifikant höheren Durchmesser aufweisen. Doppelimmunreaktionen mit Antikörpern, die den C- bzw. N-terminalen Bereich von BRP erkennen, belegten darüber hinaus, dass in den Aggregaten das vollständige BRP-Protein vorliegt. Angeregt durch die Ultrastrukturbefunde von mit den elektronendichten Strukturen in den Aggregaten assoziierten Vesikeln wurde in weiteren Doppelimmunreaktionen untersucht, ob ein typisches Protein synaptischer Vesikel neuromuskulärer Synapsen in Drosophila, der vesikuläre Glutamattransporter (DVGlut), in den BRP-Ansammlungen nachweisbar ist. Während Kolokalisation von BRP und DVGlut in aktiven Zonen präsynaptischer Boutons nachgewiesen werden konnte, war der Vesikelmarker in BRP-Aggregaten nicht kolokalisiert. Die Ergebnisse belegen, dass die Kinase SRPK79D für die Vermeidung einer ektopen Bildung von BRP-enthaltenden, elektronenmikroskopisch atypischen aktiven Zonen ähnelnden Strukturen in larvalen Motoneuronaxonen notwendig ist. Die in diesen Aggregaten regelmäßig zu beobachtenden Vesikel ähneln morphologisch synaptischen Vesikeln, besitzen aber keine dafür typischen Vesikelmarker. N2 - Intact signal transmission in an animal’s nervous system requires a properly localized and functional synapse between two neurons or between neuron and muscle. This dissertation is part of the investigation of a Drosophila melanogaster mutant which displays alterations in the distribution of a synaptic active zone protein. An important result of the present study is the documentation of an ectopic formation of active zone structural elements in this mutant. Analyses carried out in the laboratories of E. Buchner and S. Sigrist contributed to the characterization of the protein Bruchpilot (BRP), a constituent of the T-bar, the characteristic presynaptic ribbon in Drosophila. Searching for interaction partners of BRP, a serine-arginine-protein specific kinase was identified that apparently regulates T-bar assembly (Nieratschker et al., 2009). There are four kinase isoforms. Knocking out two of these isoforms (SRPK79D-RB and -RE) results in accumulations of BRP-immunoreactive aggregates in the larval ventral nerves (Nieratschker, 2008). Further studies were designed to identify the function and molecular signalling pathways of the kinase SRPK79D. One objective of the present experiments was to produce purified PB-protein in order to enable affinity-purification of an antibody against this isoform of the kinase for subsequent specific immunohistochemical localization analyses. Although production of the antigen was successful, the amount of protein produced was too low to allow efficient affinity purification. An attempt to show the expression pattern of the kinase in Drosophila embryos with in-situ hybridization resulted in production of a SRPK79D specific RNAprobe, however, the probe sensitivity was not high enough to yield conclusive results for mRNA localization. Ultrastructural analyses of the BRP-ir aggregates in the larval ventral nerves, on the other hand, yielded definite and conclusive results. These aggregates corresponded to extensive intraaxonal electron-dense, ribbon-like structures surrounded by vesicles. These electron-dense structures were differently shaped and resembled accumulations of regularly shaped, clotted or dysmorphic T-bars, which in subsequent immuno-electronmicroscopic analyses carried out by another investigator were proven to contain BRP (Nieratschker et al., 2009). An important result of the present study was the observation that similar intraaxonal aggregates were occasionally also present in wild type nerves, however, the aggregates found in the mutants were significantly more frequent and of significantly larger size than those observed in wild-type larvae. Moreover, double-immunostaining using BRP-antibodies recognizing specifically the C- and the N-terminal part of the protein, respectively, provided evidence that the complete BRP protein is localized in the aggregates. Since electron microscopy had showed that numerous vesicles were associated with the electron dense aggregates, we tested whether the vesicular glutamate transporter (DVGlut), a marker protein for synaptic vesicles of motoneurons in Drosophila, could be localized in BRP-ir aggregates. While colocalization of BRP and DVGlut was observed at the presynaptic active zones, no colocalization of the synaptic vesicle marker was observed in the BRP-ir aggregates in the larval nerves. In conclusion, the results provide evidence that the kinase SRPK79D is required for the prevention of ectopic formation of BRP-containing ribbon-like structures in larval ventral nerves. These structures include vesicles resembling synaptic vesicles, which however do not display immunoreactivity for a typical synaptic vesicle marker protein. KW - Bruchpilot KW - BRP KW - Serin-Threonin-Kinase KW - SR-Protein Kinase KW - aktive Zone KW - Cytomatrix der aktiven Zone KW - Elektronenmikroskopie KW - Ultrastruktur KW - Bruchpilot KW - SR-Protein Kinase KW - aktive Zone KW - Cytomatrix der aktiven Zone KW - Ultrastruktur KW - Bruchpilot KW - synaptic active zone cytomatrix KW - SR protein kinase KW - ultrastructure KW - electron microscopy Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70937 ER - TY - THES A1 - Sandblad, Linda T1 - Seam Binding, a Novel Mechanism for Microtubule Stabilization T1 - Naht Bindung, ein Neuartiger Mechanismus zur Stabilisierung von Mikrotubuli N2 - Microtubules are a fascinating component of the cellular scaffold protein network, the cytoskeleton. These hollow tubular structures are assembled of laterally associated proto-filaments containing ab-tubulin heterodimers in a head to tail arrangement. Accordingly microtubules have a defined polarity, which sets the base for the polarity of the cell. The microtubule lattice can be arranged in two conformations: In the more abundant B-lattice conformation, where the protofilaments interact laterally through a- to a- and b- to b-tubulin contacts and in the less stable A-lattice conformation, where a-tubulin interacts laterally with b-tubulin. In cells the microtubules generally contain 13 protofilaments of which usually one pair interacts in the A-lattice conformation, forming the so-called lattice seam. Microtubule dynamics and interactions are strongly regulated by micro-tubule associate proteins (MAPs). Structural investigations on MAPs and microtubule associated motor proteins in complex with microtubules have become possible in combination with modern electron microscopy (EM) and image processing. We have used biochemistry and different advanced EM techniques to study the interaction between microtubules and the MAP Mal3p in vitro. Mal3p is the sole member of the end-binding protein 1 (EB1) protein family in the fission yeast Schizosaccharomyces pombe. Previous in vivo studies have shown that Mal3p promotes microtubule growth. Our studies with high-resolution unidirectional shadowing EM revealed that Mal3p interacts with the microtubule lattice in a novel way, using binding sites on the microtubule that are different from those reported for other MAPs or motor proteins. Full-length Mal3p preferentially binds between two protofilaments on the microtubule lattice, leaving the rest of the lattice free. A case where Mal3p was found in two adjacent protofilament, revealed an A-lattice conformation on the microtubules, surprisingly indicating specific binding of Mal3p to the microtubule seam. With a lattice enhancer, in form of a b-tubulin binding kinesin motor domain, it was demonstrated that Mal3p stabilizes the seam which is thought to be the weakest part of a microtubule. Further, the presence of Mal3p during microtubule polymerization enhances the closure of protofilament sheets into a tubular organization. Cryo-EM and 3-D helical reconstruction on a monomeric microtubule binding domain of Mal3p, confirm the localization in between the protofilament and result in an accurate localization on the microtubule lattice. The results also indicate Mal3p’s capacity to influence the microtubule lattice conformation. Together, studies approached in vitro demonstrate that an EB1-family homolog not only interacts with the microtubule plus end, but also with the microtubule lattice. The structure of Mal3p interacting with microtubules reveals a new mechanism for microtubule stabilization and further insight on how plus end binding proteins are able promote microtubule growth. These findings further suggest that microtubules exhibit two distinct reaction platforms on their surface that can independently interact with selected MAPs or motors. N2 - Mikrotubuli sind eine faszinierende Komponente des Zytoskeletts einer Zelle. Ihre Struktur entspricht der eines Hohlzylinders. Sie sind aus seitlich assoziierten Proto-filamenten zusammengesetzt, die aus a- und b-Tubulin Untereinheiten bestehen. Diese Heterodimere sind gerichtet, bedingt durch ihre Kopf-Schwanz Anordnung. Folglich besitzen Mikrotubuli eine definierte Polarität, welche die Basis für die Polarität der Zelle bildet. Die Anordnung der Untereinheiten zu einem so genannten Mikrotubulus Gitter kann in zwei Konformationen vorkommen: In der häufigeren B-Gitter Formation, in welcher die Protofilamente seitlich durch a- zu a- und b- zu b-Tubulin interagieren und in der weniger stabilen A-Gitter Konformation, in der a-Tubulin lateral mit b-Tubulin wechselwirkt. In der Zelle vorkommende Mikrotubuli haben grundsätzlich 13 Proto-filamente. Mindestens ein Paar dieser Protofilamente interagiert in der A-Gitter Kon-formation und bildet die so genannte Gitter-Naht (lattice seam). Mikrotubuli Dynamik und Interaktionen sind streng durch Mikrotubuli assoziierte Proteine (MAPs) reguliert. Die Kombination aus moderner Elektronenmikroskopie (EM) und Bild-verarbeitung macht strukturelle Untersuchungen an MAPs und Motorproteinen im Zusammenhang mit Mikrutubuli möglich. Wir haben biochemische und hoch entwickelte EM Techniken benutzt, um die Interaktion zwischen Mikrotubuli und dem Mikrotubuli assoziierten Protein Mal3 in vitro zu untersuchen. Mal3p ist ein Homolog des konservierten Ende-Bindungs Protein 1 (EB1) in der Spalthefe Schizosaccharomyces pombe. Es wurde bereits gezeigt, dass EB1 die Struktur von Mikrotubuli stabilisiert. Mit Hilfe einer speziellen, hochauflösenden EM Schattierungstechnik haben wir demonstriert, dass Mal3p auf neuartige Weise mit dem Mikrotubulus Gitter interagiert. Dabei besetzt Mal3p Bindungsstellen am Mikrotubulus, die sich von denen der anderen MAPs oder Motorproteinen unterscheiden. Mal3p bevorzugt die Bindung zwischen zwei Proto-filamenten, lässt jedoch das übrigen Gitter unbesetzt. In seltenen Fällen wurde Mal3p in zwei nebeneinander angrenzenden Protofilamenten gefunden. An diesen Stellen zeigt sich überraschenderweise eine A-Gitter-Konformation am Mikrotubulus, was auf eine spezifische Naht-Bindung hinweist. Mit Hilfe einer Gitterverstärkung in Form einer Kinesin-Motor-Domäne, die an jede b-Untereinheit bindet, konnte gezeigt werden, dass Mal3p die Naht, den schwächsten Teil eines Mikrotubulus, stabilisiert. Des Weiteren unterstützt die Anwesenheit von Mal3p während der Mikrotubulus Polymerisation die Formierung zur Bildung des Hohlzylinders. Die Untersuchung der monomeren Mikrotubuli-Bindungs-Domäne von Mal3p unter Anwendung von Kryo-EM und anschließender 3-D helikalen Rekonstruktion, führte zur genauen Lokalisierung des Proteins auf dem Mikrotubulus Gerüst. Hierbei bestätigte sich auch die Lokalisation zwischen den Protofilamenten. Des Weiteren konnte gezeigt werden, dass Mal3p die Fähigkeit besitzt, die Konformation des Mikrotubulus Gitters zu beeinflussen. Zusammenfassend lässt sich sagen, dass das EB1-Homolog nicht nur an das Mikrotubulus Plus Ende, sondern auch an der Naht entlang des ganzen Mikrotubulus bindet. Die Art wie Mal3p mit den Mikrotubuli interagiert, zeigt einen neuen Mecha-nismus der Mikrotubuli Stabilisierung und eröffnet weitere Sichtweisen, wie Plus End Bindungsproteine die Dynamik von Mikrotubuli beeinflussen. Die Ergebnisse belegen, dass Mikrotubuli zwei definierte Reaktionsplattformen auf ihrer Oberfläche besitzen, die unabhängig mit verschiedenen MAPs und Motorproteinen interagieren KW - Mikrotubulus KW - Elektronenmikroskopie KW - Mikrotubule KW - Tubulin KW - Mal3p KW - EB1 KW - Microtubules KW - Electron Microscopy KW - Seam KW - Lattice KW - EB1 Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24714 ER - TY - THES A1 - Wagner, Martin T1 - Zyto- und Gentoxizität von Zinkoxid-Nanopartikeln in humanen mesenchymalen Stammzellen nach repetitiver Exposition und im Langzeitversuch T1 - Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells N2 - Zinkoxid-Nanopartikel (ZnO-NP) finden in vielen Produkten des täglichen Verbrauchs Verwendung. Daten über die toxikologischen Eigenschaften von ZnO-NP werden kontrovers diskutiert. Die menschliche Haut ist in Bezug auf die ZnO-NP Exposition das wichtigste Kontakt-Organ. Intakte Haut stellt eine suffiziente Barriere gegenüber NP dar. Bei defekter Haut ist ein Kontakt zu den proliferierenden Stammzellen möglich, sodass diese als wichtiges toxikologische Ziel für NP darstellen. Das Ziel dieser Dissertation war die Bewertung der genotoxischen und zytotoxischen Effekte an humanen mesenchymalen Stammzellen (hMSC) durch niedrig dosierte ZnO-NP nach 24 stündiger Exposition, repetitiven Expositionen und im Langzeitversuch bis zu 6 Wochen. Zytotoxische Wirkungen von ZnO-NP wurden mit 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid-Test (MTT) gemessen. Darüber hinaus wurde die Genotoxizität durch den Comet-Assay bewertet. Zur Langzeitbeobachtung bis zu 6 Wochen wurde die Transmissionselektronenmikroskopie (TEM) verwendet. Zytotoxizität nach 24-stündiger ZnO-NP-Exposition war ab einer Konzentration von 50 µg/ml nachweisbar. Genotoxizität konnten bereits bei Konzentrationen von 1 und 10 µg/ml ZnO-NP beschrieben werden. Wiederholte Exposition verstärkte die Zyto-, aber nicht die Genotoxizität. Eine intrazelluläre NP-Akkumulation mit Penetration der Zellorganelle wurde bei einer Exposition bis zu 6 Wochen beobachtet. Die Ergebnisse deuten auf zytotoxische und genotoxisches Effekte von ZnO-NP hin. Bereits geringe Dosen von ZnO-NP können bei wiederholter Exposition toxische Wirkungen hervorrufen sowie eine langfristige Zellakkumulation. Diese Daten sollten bei der Verwendung von ZnO-NP an geschädigter Haut berücksichtigt werden. N2 - Zinc oxide nanoparticles (ZnO-NP) are widely used in many products of daily consumption. Data on the toxicological properties of the ZnO-NP used are discussed controversially. Human skin is the most important organ in terms of ZnO-NP exposure. Intact skin has been shown to provide an adequate barrier against NPs, while defective skin allows NP contact with proliferating cells. Among proliferating cells, stem cells are the main toxicological target for NPs. Therefore, the aim of this dissertation was to evaluate the genotoxic and cytotoxic effects of human mesenchymal stem cells (hMSC) by low-dose ZnO-NP after 24 hours of exposure, repetitive exposures and in long-term experiments up to 6 weeks. Cytotoxic effects of ZnO-NP were measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test (MTT). In addition, genotoxicity was assessed by the comet assay. Transmission electron microscopy (TEM) was used for long-term observation after 6 exposure periods. The results of the study show that ZnO-NP has a cytotoxic effect starting at high concentrations of 50 µg/mL and could demonstrate genotoxic effects in hMSC exposed to 1 and 10 µg/ml ZnO-NP. Repeated exposure enhanced cytotoxicity but not genotoxicity. Intracellular NP accumulation with penetration of the cell organelles was observed at exposure up to 6 weeks. The results indicate the cytotoxic and genotoxic potential of ZnO-NP. Even small doses of ZnO-NP can cause toxic effects with repeated exposure and long-term cell accumulation. These data should be considered when using ZnO-NP on damaged skin. KW - nanoparticle KW - zinc oxid KW - stem cells KW - nanotoxicology KW - human skin KW - Nanopartikel KW - humane mesenchymale Stammzellen KW - Genotoxizität KW - Zytotoxizität KW - Repetitive Exposition KW - Elektronenmikroskopie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275726 ER -