TY - THES A1 - Stoll, Georg T1 - Identification of the mRNA-associated TOP3β- TDRD3-FMRP (TTF) -complex and its implication for neurological disorders T1 - Identifikation des mRNA-assoziierten TOP3β-TDRD3-FMRP (TTF) -Komplex und seine Bedeutung für neurologische Störungen N2 - The propagation of the genetic information into proteins is mediated by messenger- RNA (mRNA) intermediates. In eukaryotes mRNAs are synthesized by RNA- Polymerase II and subjected to translation after various processing steps. Earlier it was suspected that the regulation of gene expression occurs primarily on the level of transcription. In the meantime it became evident that the contribution of post- transcriptional events is at least equally important. Apart from non-coding RNAs and metabolites, this process is in particular controlled by RNA-binding proteins, which assemble on mRNAs in various combinations to establish the so-called “mRNP- code”. In this thesis a so far unknown component of the mRNP-code was identified and characterized. It constitutes a hetero-trimeric complex composed of the Tudor domain-containing protein 3 (TDRD3), the fragile X mental retardation protein (FMRP) and the Topoisomerase III beta (TOP3β) and was termed TTF (TOP3β-TDRD3-FMRP) -complex according to its composition. The presented results also demonstrate that all components of the TTF-complex shuttle between the nucleus and the cytoplasm, but are predominantly located in the latter compartment under steady state conditions. Apart from that, an association of the TTF-complex with fully processed mRNAs, not yet engaged in productive translation, was detected. Hence, the TTF-complex is a component of „early“ mRNPs. The defined recruitment of the TTF-complex to these mRNPs is not based on binding to distinct mRNA sequence-elements in cis, but rather on an interaction with the so-called exon junction complex (EJC), which is loaded onto the mRNA during the process of pre-mRNA splicing. In this context TDRD3 functions as an adapter, linking EJC, FMRP and TOP3β on the mRNP. Moreover, preliminary results suggest that epigenetic marks within gene promoter regions predetermine the transfer of the TTF-complex onto its target mRNAs. Besides, the observation that TOP3β is able to catalytically convert RNA-substrates disclosed potential activities of the TTF-complex in mRNA metabolism. In combination with the already known functions of FMRP, this finding primarily suggests that the TTF-complex controls the translation of bound mRNAs. In addition to its role in mRNA metabolism, the TTF-complex is interesting from a human genetics perspective as well. It was demonstrated in collaboration with researchers from Finland and the US that apart from FMRP, which was previously linked to neurocognitive diseases, also TOP3β is associated with neurodevelopmental disorders. Understanding the function of the TTF-complex in mRNA metabolism might hence provide important insight into the etiology of these diseases. N2 - Die Umwandlung der genetischen Information in Proteine erfolgt über Boten-RNA (mRNA) -Intermediate. Diese werden in Eukaryonten durch die RNA-Polymerase II gebildet und nach diversen Prozessierungs-Schritten der Translationsmaschinerie zugänglich gemacht. Während man früher davon ausging, dass die Genexpression primär auf der Ebene der Transkription reguliert wird, ist heute klar, dass post- transkriptionelle Prozesse einen ebenso wichtigen Beitrag hierzu leisten. Neben nicht-kodierenden RNAs und Metaboliten tragen insbesondere RNA- Bindungsproteine zur Kontrolle dieses Vorgangs bei. Diese finden sich in unterschiedlichen Kombinationen auf den mRNAs zusammen und bilden dadurch den sog. „mRNP-Code“ aus. Im Rahmen dieser Dissertation wurde eine bislang unbekannte Komponente des mRNP-Codes identifiziert und charakterisiert. Es handelt es sich dabei um einen hetero-trimeren Komplex, welcher aus dem Tudor Domänen Protein 3 (TDRD3) dem Fragilen X Mentalen Retardations-Protein (FMRP) sowie der Topoisomerase III beta (TOP3β) besteht. Aufgrund seiner Zusammensetzung wurde dieser TTF (TOP3β-TDRD3-FMRP) -Komplex genannt. In der vorliegenden Arbeit konnte der Nachweis geführt werden, dass sämtliche Komponenten des TTF-Komplexes zwischen Zellkern und Cytoplasma pendeln, unter Normalbedingungen jedoch vornehmlich im Cytoplasma lokalisiert sind. Des Weiteren ließ sich eine Assoziation des TTF-Komplexes mit mRNAs nachweisen, die zwar vollständig prozessiert, jedoch noch nicht Teil der produktiven Phase der Translation sind. Der TTF-Komplex ist somit eine Komponente „früher“ mRNPs. Die Rekrutierung des TTF-Komplexes an definierte mRNPs wird nicht durch Bindung an spezifische mRNA-Sequenzelemente bedingt, sondern basiert auf einer Interaktion mit dem sog. Exon Junction Complex (EJC), welcher im Kontext des pre-mRNA Spleißens auf die mRNA geladen wird. Hierbei spielt TDRD3 als Adapter zwischen dem EJC, FMRP und TOP3β die entscheidende Rolle. Präliminäre Experimente legen darüber hinaus den Schluss nahe, dass epigenetische Markierungen im Promotor-Bereich distinkter Gene von entscheidender Bedeutung für den Transfer des TTF-Komplexes auf dessen Ziel-mRNAs sind. Einen wichtigen ersten Hinweis auf die potentielle Funktion des TTF-Komplexes im Kontext des mRNA Metabolismus erbrachte die Beobachtung, dass TOP3β in der Lage ist RNA katalytisch umzusetzen. Dieser Befund lässt in Verbindung mit den bereits beschriebenen Aktivitäten von FMRP vermuten, dass der TTF-Komplex die Translation gebundener mRNAs kontrolliert. Zusätzlich zu seiner Rolle im mRNA Metabolismus ist der TTF-Komplex auch aus humangenetischer Sicht hoch interessant. So konnte in Zusammenarbeit mit finnischen und US-amerikanischen Forschern gezeigt werden, dass neben FMRP, einem bekannten Krankheitsfaktor neurokognitiver Syndrome, auch TOP3β mit neurologischen Entwicklungsstörungen assoziiert ist. Das Verständnis der Funktion des TTF-Komplexes im mRNA Metabolismus könnte daher wichtige Einblicke in die Etiologie dieser Krankheiten liefern. KW - Messenger-RNS KW - Messenger-RNP KW - RNA binding proteins KW - mRNA metabolism KW - eukaryotic gene expression Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111440 ER - TY - JOUR A1 - Raulf, Friedrich A1 - Mäueler, Winfried A1 - Robertson, Scott M. A1 - Schartl, Manfred T1 - Localization of cellular src mRNA during development and in the differentiated bipolar neurons of the adult neural retina in Xiphophorus N2 - The expression of the c-src gene in embryonie and adult tissue of the teleost fish Xiphophorus helleri was analyzed by in-situ hybridization. The highly conserved fish c-src gene was found to be expressed at high levels in midterm embryos, where c-src mRNA was localized in developing neurons of the sensory layer of the differentiating retina and in the developing brain. In adult tissues the expression of c-src was found to persist in certain cell types of the brain and the neural retina, especially in the bipolar cells of the inner nuclear layer, which are postmitotic, fully differentiated mature neurons. Thus c-src in Xiphophorus appears to be a developmentally regulated proto-oncogene which is important for neuronal differentiation during organogenesis, but whose persistence of expression in certain terminally differentiated neurons strongly suggests a particular maintenance function for c-src in these cells as well. KW - Schwertkärpfling KW - Messenger-RNS Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86703 ER - TY - THES A1 - Tyagi, Anu T1 - Role of SWI/SNF in regulating pre-mRNA processing in Drosophila melanogaster T1 - Funktion von SWI/SNF in der Regulation der prämRNA-Prozessierung in Drosophila melanogaster N2 - ATP dependent chromatin remodeling complexes are multifactorial complexes that utilize the energy of ATP to rearrange the chromatin structure. The changes in chromatin structure lead to either increased or decreased DNA accessibility. SWI/SNF is one of such complex. The SWI/SNF complex is involved in both transcription activation and transcription repression. The ATPase subunit of SWI/SNF is called SWI2/SNF2 in yeast and Brahma, Brm, in Drosophila melanogaster. In mammals there are two paralogs of the ATPase subunit, Brm and Brg1. Recent studies have shown that the human Brm is involved in the regulation of alternative splicing. The aim of this study was to investigate the role of Brm in pre-mRNA processing. The model systems used were Chironomus tentans, well suited for in situ studies and D. melanogaster, known for its full genome information. Immunofluorescent staining of the polytene chromosome indicated that Brm protein of C. tentans, ctBrm, is associated with several gene loci including the Balbiani ring (BR) puffs. Mapping the distribution of ctBrm along the BR genes by both immuno-electron microscopy and chromatin immunoprecipitation showed that ctBrm is widely distributed along the BR genes. The results also show that a fraction of ctBrm is associated with the nascent BR pre-mRNP. Biochemical fractionation experiments confirmed the association of Brm with the RNP fractions, not only in C. tentans but also in D. melanogaster and in HeLa cells. Microarray hybridization experiments performed on S2 cells depleted of either dBrm or other SWI/SNF subunits show that Brm affects alternative splicing and 3´ end formation. These results indicated that BRM affects pre-mRNA processing as a component of SWI/SNF complexes. 1 N2 - ATP abhängige Chromatin Remodelling Komplexe bestehen aus diversen Faktoren, welche die bei der Umsetzung von ATP freiwerdende Energie dazu nutzen, die Chromatinstruktur neu zu ordnen. Diese Veränderungen führen zu einer Zu- bzw. Abnahme in der Zugänglichkeit der DNA. Ein Beispiel dafür ist der SWI/SNF-Komplex, der sowohl in die Aktivierung als auch die Inhibierung der Transkription involviert ist. Die ATPase-Untereinheit von SWI/SNF heißt in Hefe SWI2/SNF2 und in Drosophila melanogaster Brahma (Brm). Im Gegensatz dazu besitzen Säuger zwei Paraloge der ATPase-Einheit, nämlich Brm und Brg1. Neueste Studien haben gezeigt, dass das humane Brm in der Regulation des Alternativen Spleißen beteiligt ist. Ziel dieser Arbeit ist es, die Rolle von Brm in der prä-mRNA-Prozessierung zu untersuchen. Als Versuchssysteme wurden Chironomus tentans und D. melanogaster herangezogen. Dabei eignete sich C. tentans vor allem für die in situ Studien während bei D. melanogaster das vollständig sequenzierte Genom von Vorteil war. Immunfluoreszenzfärbungen von Polytän-Chromosomen zeigen eine Assoziation von Brm von C. tentans, ctBrm; mit unterschiedlichen Genloci, einschließlich der Balbiani-Ringe (BR). Mit Hilfe von Immun-Elektronenmikroskopie und Chromatin-Immunpräzipitation (ChIP) wird die Verteilung von ctBrm entlang der BR-Gene untersucht. Dabei zeigt ctBrm eine weite Streuung. Die Ergebnisse lassen außerdem darauf schließen, dass ein Teil des ctBrm-Proteins mit naszierenden BRprä- mRNPs interagiert. Biochemische Fraktionierungs-experimente bestätigen die Assoziation von Brm mit RNP-Fraktionen nicht nur in C. tentans, sondern auch in D. melanogaster und in HeLa-Zellen. Microarray-Untersuchungen in S2-Zellen, in denen entweder dBrm oder eine andere Untereinheit von SWI/SNF depletiert war, zeigen, dass BRM als eine Komponente des SWI/SNF-Komplexes sowohl Alternatives Spleißen und die Formierung des 3´ Endes, als auch die prä-mRNA-Prozessierung beeinflusst. KW - Taufliege KW - Messenger-RNS KW - Prozessierung KW - SWI/SNF KW - mRNA processing KW - SWI/SNF KW - mRNA processing Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72253 ER - TY - THES A1 - Herold, Andrea T1 - The role of human and Drosophila NXF proteins in nuclear mRNA export T1 - Die Rolle von humanen und Drosophila-NXF-Proteinen beim Export von mRNAs aus dem Kern N2 - A distinguishing feature of eukaryotic cells is the spatial separation of the site of mRNA synthesis (nucleus) from the site of mRNA function (cytoplasm) by the nuclear envelope. As a consequence, mRNAs need to be actively exported from the nucleus to the cytoplasm. At the time when this study was initiated, both human TAP and yeast Mex67p had been proposed to play a role in this process. Work presented in this thesis (section 2.1) revealed that TAP and Mex67p belong to an evolutionarily conserved family of proteins which are characterized by a conserved modular domain organization. This family was termed nuclear export factor (NXF) family. While the yeast genome encodes only one NXF protein (Mex67p), the genomes of higher eukaryotes encode several NXF proteins. There are two nxf genes in C. elegans and A. gambiae, four in D. melanogaster, and at least four in H. sapiens and M. musculus. It was unclear whether, apart from TAP and Mex67p, other members of this family would also be involved in mRNA export. In the first part of this thesis (2.1), several human NXF members were tested for a possible function in nuclear mRNA export. They were analyzed for their interaction with RNA, nucleoporins and other known TAP partners in vitro, and tested for their ability to promote nuclear export of a reporter mRNA in vivo. Using these assays, human NXF2, NXF3 and NXF5 were all shown to interact with the known NXF partner p15. NXF2 and NXF5 were also found to bind directly to RNA, but only NXF2 was able to bind directly to nucleoporins and to promote the nuclear export of an (untethered) reporter mRNA. Thus NXF2 possesses many and NXF3 and NXF5 possess some of the features required to serve as an export receptor for cellular mRNAs. As NXF2 and NXF3 transcripts were mainly found in testis, and the closest orthologue of NXF5 in mouse has the highest levels of expression in brain, these NXF members could potentially serve as tissue-specific mRNA export receptors. In the second part of this work (2.2), the role of different Drosophila NXF proteins and other export factors in mRNA export was investigated using double-stranded RNA interference (RNAi) in Drosophila Schneider cells. Three of the four predicted Drosophila NXF members (NXF1-3) were found to be expressed in this cell line and could be targeted by RNAi. Depletion of endogenous NXF1 inhibited growth and resulted in the nuclear accumulation of polyadenylated RNA. Fluorescence in situ hybridization revealed that export of both heat shock and non-heat shock mRNAs, including intron-containing and intronless mRNAs, was inhibited. Depleting endogenous NXF2 or NXF3 had no apparent phenotype. These results suggested that NXF1 (but not NXF2-NXF4) mediates the export of bulk mRNA in Drosophila cells. We and others have shown that human NXF proteins function as heterodimers bound to the small protein p15. Accordingly, silencing of Drosophila p15 resulted in a block of mRNA export which was indistinguishable from the export inhibition seen after targeting NXF1. These observations indicated that neither NXF1 nor p15 can promote export in the absence of the other subunit of the heterodimer. NXF1:p15 heterodimers are implicated in late steps of mRNA export, i.e. in the translocation of mRNP export cargoes across the nuclear pore complex. The mechanism by which NXF1:p15 dimers are recruited to the mRNA is unclear. A protein that is thought to play a role in this process is the putative RNA helicase UAP56. Similar to NXF1 and p15, UAP56 was shown to be essential for mRNA export in Drosophila. UAP56 is recruited cotranscriptionally to nascent transcripts and was suggested to facilitate the interaction of NXF1:p15 with mRNPs. Even though both NXF1:p15 heterodimers and UAP56 had been implicated in general mRNA export, it was unclear whether there are classes of mRNAs that require NXF1:p15, but not UAP56 or vice versa. It was also unclear what fraction of cellular mRNAs is exported by NXF1:p15 dimers and UAP56, and whether mRNAs exist that reach the cytoplasm through alternative routes, i.e. by recruiting other export receptors. To address these issues we performed a genome-wide analysis of nuclear mRNA export pathways using microarray technology (2.2.2). We analyzed the relative abundance of nearly half of the Drosophila transcriptome in the cytoplasm of Drosophila Schneider cells depleted of different export factors by RNAi. We showed that the vast majority of transcripts were underrepresented in the cytoplasm of cells depleted of NXF1, p15 or UAP56 as compared to control cells. Only a small number of mRNAs were apparently not affected by the depletions. These observations, together with the wide and similar effects on mRNA levels caused by the depletion of NXF1, p15 or UAP56, indicate that these proteins define the major mRNA export pathway in these cells. We also identified a small subset of mRNAs which appeared to be exported by NXF1:p15 dimers independently of UAP56. In contrast, no significant changes in mRNA expression profiles were observed in cells depleted of NXF2 or NXF3, suggesting that neither NXF2 nor NXF3 play an essential role in mRNA export in Drosophila Schneider cells. Crm1 is a transport receptor implicated in the export of a variety of non-mRNA and protein cargoes. In addition, human Crm1 has been suggested to be involved in the export of a specific mRNA species, serving as a "specialized" mRNA export receptor. A role of human Crm1 in the export of bulk mRNA is considered unlikely. We analyzed the role of Drosophila Crm1 in mRNA export by inhibiting Crm1 with the drug leptomycin B in Schneider cells. Subsequent microarray analysis demonstrated that the inactivation of Crm1 resulted in decreased cytoplasmic levels of less than 1% of all mRNAs, indicating that Crm1 is indeed not a major mRNA export receptor. The genome-wide analysis also revealed a feedback loop by which a block to mRNA export triggers the upregulation of genes involved in this process. This thesis also includes two sections describing projects in which I participated during my Ph.D., but which were not the main focus of this thesis. In section 2.3, the role of the different TAP/NXF1 domains in nuclear mRNA export is discussed. Section 2.4 describes results that were obtained as part of a collaboration using the RNAi technique in Schneider cells to study the function of Cdc37. N2 - Bedingt durch die räumliche Trennung von Transkription und Translation müssen mRNAs in eukaryotischen Zellen aktiv vom Kern in das Cytoplasma transportiert werden. Zu Beginn dieser Arbeit war bekannt, dass das menschliche Protein TAP und Mex67p aus Hefe an diesem Prozess beteiligt sind. Mit Hilfe von Datenbankrecherchen konnte in dieser Arbeit gezeigt werden (Kapitel 2.1), dass TAP und Mex67p zu einer Proteinfamilie von verwandten Proteinen gehören, deren Mitglieder sich durch eine konservierte, modulartige Domänenstruktur auszeichnen. Dieser bis dahin unbekannten Familie wurde die Bezeichnung "Nuclear Export Factor (NXF)"-Familie zugewiesen. Während das Hefegenom für nur ein NXF-Protein (Mex67p) kodiert, finden sich in den Genomen höherer Eukaryoten mehrere nxf-Gene. So konnten in C. elegans und A. gambiae zwei nxf-Gene und in D. melanogaster, H. sapiens und M. musculus vier nxf-Gene identifiziert werden. Es war jedoch unklar, ob diese bis dahin uncharakterisierten NXF-Proteine - ähnlich wie TAP und Mex67p - an mRNA-Exportprozessen beteiligt sind. Daher wurde im ersten Teil dieser Arbeit (2.1) untersucht, inwieweit verschiedene menschliche NXF-Proteine die typischen Charakteristika von mRNA-Exportrezeptoren aufweisen. Hierzu wurde analysiert, ob die einzelnen humanen NXF-Proteine in der Lage sind, mit RNA, Kernporenproteinen und anderen schon bekannten TAP-Interaktoren in vitro zu interagieren. Zudem wurden verschiedene menschliche NXF-Proteine auf ihre Fähigkeit getestet, den Export einer Reporter-mRNA in vivo zu stimulieren. Mit Hilfe dieser Experimente konnte nachgewiesen werden, dass NXF2, NXF3 und NXF5 in der Lage sind, mit dem TAP-Interaktor p15 zu interagieren, aber nur NXF2 und NXF5 direkt an RNA binden können. Ausschließlich NXF2 war in der Lage, direkt an Kernporenproteine zu binden und den Export der getesteten Reporter-mRNA zu stimulieren. NXF2 besitzt also die typischen Eigenschaften eines mRNA-Exportrezeptors, während bei NXF3 und NXF5 nur einige dieser Eigenschaften nachgewiesen werden konnten. Da in Säugetieren eine gewebespezifische Expression verschiedener TAP-Homologe nachgewiesen wurde, könnte es sich bei diesen NXF-Mitgliedern um gewebespezifische Exportfaktoren handeln. So wurden z.B. humane NXF2- und NXF3-Transkripte vor allem in Hodengewebe detektiert, während das nächstverwandte Ortholog von menschlichem NXF5 in Maus am stärksten in Hirngewebe exprimiert wird. Im zweiten Teil dieser Arbeit (2.2) wurde die mögliche Beteiligung von Drosophila-NXF-Proteinen an mRNA-Exportprozessen mit Hilfe von RNA-Interferenz (RNAi) in Drosophila-Schneiderzellen untersucht. Die Analyse wurde dabei auf nur drei der vier NXF-Proteine (NXF1-3) beschränkt, da das vierte (NXF4) in diesen Zellen nicht exprimiert ist bzw. nicht nachgewiesen werden konnte. Die Depletion von endogenem NXF1 durch RNAi verursachte einen Wachstumsstopp der Zellen sowie eine Akkumulierung von polyadenylierten RNAs im Kern. Mit Hilfe von in-situ-Hybridisierung konnte gezeigt werden, dass in Zellen, in denen NXF1 depletiert worden war, der Export von Hitzeschock-mRNAs und Nicht-Hitzeschock-mRNAs blockiert war. Hierbei waren sowohl intronlose, als auch intronhaltige Transkripte betroffen. Die Depletion von endogenem NXF2 oder NXF3 hatte keine offensichlichen Auswirkungen auf den Phänotyp der Zellen. Diese Ergebnisse deuten darauf hin, dass NXF1 (nicht aber NXF2-NXF4) für den Export des Großteils von mRNAs in Drosophila-Schneiderzellen verantwortlich ist. Es war postuliert worden, dass menschliche NXF-Proteine nur als Heterodimere (komplexiert mit dem Protein p15) aktiv sind. In dieser Arbeit konnte nachgewiesen werden, dass die Depletion von p15 mit Hilfe von RNAi in Drosophila-Schneiderzellen - ähnlich wie die Depletion von NXF1 - eine Blockierung des Exports von mRNAs zur Folge hat. Die nahezu identischen Effekte nach der Depletion von NXF1 oder p15 legen den Schluss nahe, dass keines der zwei Proteine ohne das andere mRNAs exportieren kann, die Bildung eines Heterodimers also auch in Drosophila essentiell ist. NXF1:p15-Heterodimere spielen eine Rolle bei späten Vorgängen des Kernexports, da sie die Translokation von mRNPs durch die Kernpore hindurch vermitteln. Unklar ist jedoch, wie NXF1:p15-Dimere an das mRNA-Substrat binden. Es war postuliert worden, dass die RNA-Helikase UAP56 dabei eine Rolle spielt. UAP56 ist ähnlich wie NXF1 und p15 essentiell für den Export von mRNAs in Drosophila. Es bindet schon während der Transkription an die RNA und könnte die Interaktion von NXF1:p15 mit dem Transkript erleichtern. Obgleich NXF1:p15 und UAP56 eindeutig als essentielle Exportfaktoren identifiziert worden waren, war die Frage, inwieweit alle mRNA-Exportvorgänge NXF1, p15 und UAP56 benötigen, noch unbeantwortet. Beispielsweise könnten mRNAs existieren, die NXF1 und p15 benötigen, nicht aber UAP56 (oder umgekehrt). Zudem könnten mRNAs existieren, die ganz ohne die Hilfe von NXF1, p15 und UAP56 exportiert werden können, z.B. indem sie andere Exportfaktoren nutzen. Um diese Frage zu beantworten, wurde eine auf Microarrays basierende "large scale"-Analyse durchgeführt (2.2.2). Dabei wurden die relativen Häufigkeiten von etwa der Hälfte aller Drosophila-Transkripte im Cytoplasma von Drosophila-Schneiderzellen bestimmt, in denen verschiedene Exportfaktoren mit Hilfe von RNAi inhibiert worden waren. Mit diesem Ansatz konnte gezeigt werden, dass im Cytoplasma von Zellen, in denen die Expression von NXF1, p15 oder UAP56 durch RNAi inhibiert worden war, der Großteil aller Transkripte im Vergleich zu Kontrollzellen unterrepräsentiert war. Diese Ergebnisse deuten darauf hin, dass sowohl NXF1:p15 also auch UAP56 essentiell für den Export der meisten mRNAs sind. Es konnte aber auch eine geringe Anzahl von Transkripten identifiziert werden, deren Abundanz im Cytoplasma sich durch die Depletion dieser drei Proteine nicht veränderte. Diese Transkripte könnten u.U. mit Hilfe von alternativen Exportrezeptoren in das Cytoplama gelangen. Des weiteren wurde eine kleine Gruppe mRNAs gefunden, die von NXF1:p15-Dimeren ohne die Hilfe von UAP56 exportiert werden. Im Gegensatz dazu konnten keine signifikanten Änderungen der mRNA Expressionsprofile in Schneiderzellen nachgewiesen werden, in denen NXF2 oder NXF3 mit Hilfe von RNAi depletiert worden waren. Dies legt den Schluss nahe, dass weder NXF2 noch NXF3 eine essentielle Aufgabe beim Export von mRNAs in diesen Zellen haben. Das Protein Crm1 ist ein Transportrezeptor, der am Export von einer Vielzahl von RNA- und Proteinsubstraten beteiligt ist. Menschliches Crm1 wurde als potentieller mRNA-Exportrezeptor für einzelne mRNAs mit spezifischen Eigenschaften gehandelt. Eine Beteiligung am generellen Export von mRNAs wurde aber als unwahrscheinlich angesehen. In dieser Arbeit wurde eine mögliche Beteiligung von Drosophila-Crm1 an mRNA-Exportprozessen untersucht (2.2.2). Durch eine Behandlung mit Leptomycin B wurde Crm1 in Drosophila-Zellen inhibiert. Die nachfolgenden Analysen mit Hilfe von Microarrays konnten bestätigen, dass Crm1 auch in Drosophila kein genereller mRNA Exportfaktor ist, da weniger als 1% aller Transkripte signifikant niedrigere Level im Cytoplasma aufwiesen. Zudem konnten bisher keine Transkripte identifiziert werden, die eindeutig von Crm1, aber ohne die Beteiligung von NXF1:p15 exportiert werden. In der auf Microarrays basierenden Analyse konnte außerdem ein "feedback loop" nachgewiesen werden, der im Falle einer Exportinhibierung zu einer Hochregulierung von Genen führt, die eine Rolle bei Kernexportprozessen spielen. Zudem werden in dieser Arbeit zwei Projekte beschrieben, an denen ich während meiner Doktorarbeit beteiligt war, die aber nicht das Hauptthema meiner Promotion waren. Kapitel 2.3 beschreibt die Analyse der Rolle der verschiedenen TAP/NXF1-Domänen beim mRNA-Kernexport. Kapitel 2.4 enthält Daten, die im Rahmen einer Kooperation erzielt wurden, bei der die Funktion von Cdc37 mit Hilfe von RNAi in Drosophila-Schneiderzellen untersucht wurde. KW - Zellkern KW - Messenger-RNS KW - Export KW - Proteine KW - Kernexport KW - mRNA KW - NXF KW - nuclear export KW - mRNA KW - NXF Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5601 ER -