TY - JOUR A1 - Uhler, Johannes A1 - Haase, Peter A1 - Hoffmann, Lara A1 - Hothorn, Torsten A1 - Schmidl, Jürgen A1 - Stoll, Stefan A1 - Welti, Ellen A. R. A1 - Buse, Jörn A1 - Müller, Jörg T1 - A comparison of different Malaise trap types JF - Insect Conservation and Diversity N2 - Recent reports on insect decline have highlighted the need for long‐term data on insect communities towards identifying their trends and drivers. With the launch of many new insect monitoring schemes to investigate insect communities over large spatial and temporal scales, Malaise traps have become one of the most important tools due to the broad spectrum of species collected and reduced capture bias through passive sampling of insects day and night. However, Malaise traps can vary in size, shape, and colour, and it is unknown how these differences affect biomass, species richness, and composition of trap catch, making it difficult to compare results between studies. We compared five Malaise trap types (three variations of the Townes and two variations of the Bartak Malaise trap) to determine their effects on biomass and species richness as identified by metabarcoding. Insect biomass varied by 20%–55%, not strictly following trap size but varying with trap type. Total species richness was 20%–38% higher in the three Townes trap models compared to the Bartak traps. Bartak traps captured lower richness of highly mobile taxa but increased richness of ground‐dwelling taxa. The white roofed Townes trap captured a higher richness of pollinators. We find that biomass, total richness, and taxa group specific richness are all sensitive to Malaise trap type. Trap type should be carefully considered and aligned to match monitoring and research questions. Additionally, our estimates of trap type effects can be used to adjust results to facilitate comparisons across studies. KW - Bartak KW - biodiversity KW - insect communities KW - insect monitoring KW - Malaise trap KW - Townes KW - trap selectivity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293694 VL - 15 IS - 6 SP - 666 EP - 672 ER - TY - JOUR A1 - Breeze, Tom D. A1 - Vaissiere, Bernhard E. A1 - Bommarco, Riccardo A1 - Petanidou, Theodora A1 - Seraphides, Nicos A1 - Kozak, Lajos A1 - Scheper, Jeroen A1 - Biesmeijer, Jacobus C. A1 - Kleijn, David A1 - Gyldenkærne, Steen A1 - Moretti, Marco A1 - Holzschuh, Andrea A1 - Steffan-Dewenter, Ingolf A1 - Stout, Jane C. A1 - Pärtel, Meelis A1 - Zobel, Martin A1 - Potts, Simon G. T1 - Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe JF - PLOS ONE N2 - Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue. KW - economy services KW - fruit set KW - sequential introduction KW - enhance KW - biodiversity KW - abundance KW - declines KW - crops KW - colonies KW - density Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117692 SN - 1932-6203 VL - 9 IS - 1 ER - TY - JOUR A1 - Kortmann, Mareike A1 - Roth, Nicolas A1 - Buse, Jörn A1 - Hilszczański, Jacek A1 - Jaworski, Tomasz A1 - Morinière, Jérôme A1 - Seidl, Rupert A1 - Thorn, Simon A1 - Müller, Jörg C. T1 - Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations JF - Ecological Applications N2 - Natural disturbances are increasing around the globe, also impacting protected areas. Although previous studies have indicated that natural disturbances result in mainly positive effects on biodiversity, these analyses mostly focused on a few well established taxonomic groups, and thus uncertainty remains regarding the comprehensive impact of natural disturbances on biodiversity. Using Malaise traps and meta‐barcoding, we studied a broad range of arthropod taxa, including dark and cryptic taxa, along a gradient of bark beetle disturbance severities in five European national parks. We identified order‐level community thresholds of disturbance severity and classified barcode index numbers (BINs; a cluster system for DNA sequences, where each cluster corresponds to a species) as negative or positive disturbance indicators. Negative indicator BINs decreased above thresholds of low to medium disturbance severity (20%–30% of trees killed), whereas positive indicator BINs benefited from high disturbance severity (76%–98%). BINs allocated to a species name contained nearly as many positive as negative disturbance indicators, but dark and cryptic taxa, particularly Diptera and Hymenoptera in our data, contained higher numbers of negative disturbance indicator BINs. Analyses of changes in the richness of BINs showed variable responses of arthropods to disturbance severity at lower taxonomic levels, whereas no significant signal was detected at the order level due to the compensatory responses of the underlying taxa. We conclude that the analyses of dark taxa can offer new insights into biodiversity responses to disturbances. Our results suggest considerable potential for forest management to foster arthropod diversity, for example by maintaining both closed‐canopy forests (>70% cover) and open forests (<30% cover) on the landscape. KW - arthropods KW - biodiversity KW - conservation KW - metabarcoding KW - national park KW - natural disturbance KW - threshold indicator taxa analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276392 VL - 32 IS - 2 ER - TY - JOUR A1 - Basset, Yves A1 - Cizek, Lukas A1 - Cuénoud, Philippe A1 - Didham, Raphael K. A1 - Novotny, Vojtech A1 - Ødegaard, Frode A1 - Roslin, Tomas A1 - Tishechkin, Alexey K. A1 - Schmidl, Jürgen A1 - Winchester, Neville N. A1 - Roubik, David W. A1 - Aberlenc, Henri-Pierre A1 - Bail, Johannes A1 - Barrios, Hector A1 - Bridle, Jonathan R. A1 - Castaño-Meneses, Gabriela A1 - Corbara, Bruno A1 - Curletti, Gianfranco A1 - da Rocha, Wesley Duarte A1 - De Bakker, Domir A1 - Delabie, Jacques H. C. A1 - Dejean, Alain A1 - Fagan, Laura L. A1 - Floren, Andreas A1 - Kitching, Roger L. A1 - Medianero, Enrique A1 - de Oliveira, Evandro Gama A1 - Orivel, Jerome A1 - Pollet, Marc A1 - Rapp, Mathieu A1 - Ribeiro, Servio P. A1 - Roisin, Yves A1 - Schmidt, Jesper B. A1 - Sørensen, Line A1 - Lewinsohn, Thomas M. A1 - Leponce, Maurice T1 - Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle JF - PLoS ONE N2 - Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. KW - trees KW - species richness KW - beta-diveristy KW - strategy KW - turnover KW - similarity KW - biodiversity KW - specialization KW - herbivorous insects KW - assemblages Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136393 VL - 10 IS - 12 ER - TY - THES A1 - Kortmann, Mareike T1 - Biodiversity and recreation – Optimizing tourism and forest management in forests affected by bark beetles T1 - Biodiversität und Erholungsfunktionen – Optimierung von Tourismus- und Waldmanagement in Borkenkäferwäldern N2 - Forests are multi-functional system, which have to fulfil different objectives at the same time. The main functions include the production of wood, storage of carbon, the promotion of biological diversity and the provision of recreational space. Yet, global forests are affected by large and intense natural disturbances, like bark beetle infestations. While natural disturbances threaten wood production and are perceived as ‘catastrophe’ diminishing recreational value, biodiversity can benefit from the disturbance-induced changes in forest structures. This trade-off poses a dilemma to managers of bark beetle affected stands, particularly in protected areas designated to both nature conservation and recreation. Forest landscapes need a sustainable management concept aligning these different objectives. In order to support this goal with scientific knowledge, the aim of this work is to analyse ecological and social effects along a gradient of different disturbance severities. In this context, I studied the effects of a disturbance severity gradient on the diversity of different taxonomic groups including vascular plants, mosses, lichens, fungi, arthropods and birds in five national parks in Central Europe. To analyse the recreational value of the landscape I conducted visitor surveys in the same study areas in which the biodiversity surveys were performed. To analyse possible psychological or demographic effects on preferences for certain disturbance intensities, an additional online survey was carried out. N2 - Wälder müssen unterschiedliche Zielsetzungen zur gleichen Zeit erfüllen. Zu den wichtigsten Zielsetzungen zählen Produktion von Holz, Speicherung von CO2, die Förderung der biologischen Vielfalt und die Bereitstellung von Erholungsgebieten. Wälder sind jedoch global von intensiven natürlichen Störungen wie Borkenkäferbefall betroffen. Während natürliche Störungen die Holzproduktion bedrohen und von der Bevölkerung als „Katastrophe“ wahrgenommen werden, die den Erholungswert verringert, kann die biologische Vielfalt von den störungsbedingten Veränderungen der Waldstrukturen profitieren. Dieser Kompromiss stellt die Manager der von Borkenkäfern betroffenen Bestände vor ein Dilemma, insbesondere in Schutzgebieten, die sowohl dem Naturschutz als auch der Erholung gewidmet sind, und fordert ein nachhaltiges Bewirtschaftungskonzept, das diese unterschiedlichen Ziele in Einklang bringt. Um diese Vorhaben durch wissenschaftliche Erkenntnisse zu unterstützen, ist das Ziel dieser Arbeit, ökologische und soziale Effekte entlang eines Gradienten verschiedener Störungsintensitätsgrade zu analysieren. In diesem Zusammenhang wurden die Auswirkungen verschiedener Störungsintensitäten auf die Biodiversität verschiedener taxonomischer Gruppen, einschließlich Gefäßpflanzen, Moosen, Flechten, Pilzen, Arthropoden und Vögeln untersucht. Außerdem Befragungen von Nationalpark Besuchern durchgeführt, um den Erholungswert der Landschaft zu analysieren. Um mögliche psychologische oder demografische Auswirkungen auf Präferenzen für bestimmte Störungsintensitäten zu analysieren, wurde zudem eine Online-Umfrage durchgeführt. KW - Borkenkäfer KW - Nationalpark KW - Biodiversität KW - natural disturbance KW - nature conservation KW - national park KW - biodiversity KW - recreation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240317 ER - TY - JOUR A1 - Rinawati, Fitria A1 - Stein, Katharina A1 - Lindner, André T1 - Climate change impacts on biodiversity-the setting of a lingering global crisis JF - Diversity N2 - Climate change has created potential major threats to global biodiversity. The multiple components of climate change are projected to affect all pillars of biodiversity, from genes over species to biome level. Of particular concerns are "tipping points" where the exceedance of ecosystem thresholds will possibly lead to irreversible shifts of ecosystems and their functioning. As biodiversity underlies all goods and services provided by ecosystems that are crucial for human survival and wellbeing, this paper presents potential effects of climate change on biodiversity, its plausible impacts on human society as well as the setting in addressing a global crisis. Species affected by climate change may respond in three ways: change, move or die. Local species extinctions or a rapidly affected ecosystem as a whole respectively might move toward its particular "tipping point", thereby probably depriving its services to human society and ending up in a global crisis. Urgent and appropriate actions within various scenarios of climate change impacts on biodiversity, especially in tropical regions, are needed to be considered. Foremost a multisectoral approach on biodiversity issues with broader policies, stringent strategies and programs at international, national and local levels is essential to meet the challenges of climate change impacts on biodiversity. KW - biodiversity KW - climate change KW - ecosystem function KW - ecosystem service KW - tropical forest Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131866 VL - 5 IS - 1 ER - TY - JOUR A1 - Bartomeus, Ignasi A1 - Potts, Simon G. A1 - Steffan-Dewenter, Ingolf A1 - Vaissiere, Bernard E. A1 - Woyciechowski, Michal A1 - Krewenka, Kristin M. A1 - Tscheulin, Thomas A1 - Roberts, Stuart P. M. A1 - Szentgyoergyi, Hajnalka A1 - Westphal, Catrin A1 - Bommarco, Riccardo T1 - Contribution of insect pollinators to crop yield and quality varies with agricultural intensification JF - PEERJ N2 - Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations. KW - biodiversity KW - pollination KW - honeybee KW - wild bees KW - agroecosystems KW - native pollinators KW - species richness KW - bee pollinators KW - wild KW - ecosystemservices KW - fruit-quality KW - oilseed rape KW - land-use KW - honey KW - patterns Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116928 SN - 2167-9843 VL - 2 IS - e328 ER - TY - JOUR A1 - Deeleman-Reinhold, Christa L. A1 - Miller, Jeremy A1 - Floren, Andreas T1 - Depreissia decipiens, an enigmatic canopy spider from Borneo revisited (Araneae, Salticidae), with remarks on the distribution and diversity of canopy spiders in Sabah, Borneo JF - ZooKeys N2 - Depreissia is a little known genus comprising two hymenopteran-mimicking species, one found in Central Africa and one in the north of Borneo. The male of D. decipiens is redescribed, the female is described for the first time. The carapace is elongated, dorsally flattened and rhombus-shaped, the rear of the thorax laterally depressed and transformed, with a pair of deep pits; the pedicel is almost as long as the abdomen. The male palp is unusual, characterized by the transverse deeply split membranous tegulum separating a ventral part which bears a sclerotized tegular apophysis and a large dagger-like retrodirected median apophysis. The female epigyne consists of one pair of large adjacent spermathecae and very long copulatory ducts arising posteriorly and rising laterally alongside the spermathecae continuing in several vertical and horizontal coils over the anterior surface. Relationships within the Salticidae are discussed and an affinity with the Cocalodinae is suggested. Arguments are provided for a hypothesis that D. decipiens is not ant-mimicking as was previously believed, but is a mimic of polistinine wasps. The species was found in the canopy in the Kinabalu area only, in primary and old secondary rainforest at 200–700 m.a.s.l. Overlap of canopy-dwelling spider species with those in the understorey are discussed and examples of species richness and endemism in the canopy are highlighted. Canopy fogging is a very efficient method of collecting for most arthropods. The canopy fauna adds an extra dimension to the known biodiversity of the tropical rainforest. In southeast Asia, canopy research has been neglected, inhibiting evaluation of comparative results of this canopy project with that from other regions. More use of fogging as a collecting method would greatly improve insight into the actual species richness and species distribution in general. KW - depreissia decipiens KW - jumping spiders KW - canopy spiders KW - taxonomy KW - biodiversity KW - ant-mimicking spiders KW - wasp-mimicking KW - Mt. Kinabalu KW - rainforest KW - Cocalodinae KW - Polistine wasps KW - endemism Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168342 VL - 556 ER - TY - JOUR A1 - Redlich, Sarah A1 - Zhang, Jie A1 - Benjamin, Caryl A1 - Dhillon, Maninder Singh A1 - Englmeier, Jana A1 - Ewald, Jörg A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Haensel, Maria A1 - Hovestadt, Thomas A1 - Kollmann, Johannes A1 - Koellner, Thomas A1 - Kübert‐Flock, Carina A1 - Kunstmann, Harald A1 - Menzel, Annette A1 - Moning, Christoph A1 - Peters, Wibke A1 - Riebl, Rebekka A1 - Rummler, Thomas A1 - Rojas‐Botero, Sandra A1 - Tobisch, Cynthia A1 - Uhler, Johannes A1 - Uphus, Lars A1 - Müller, Jörg A1 - Steffan‐Dewenter, Ingolf T1 - Disentangling effects of climate and land use on biodiversity and ecosystem services—A multi‐scale experimental design JF - Methods in Ecology and Evolution N2 - Climate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients. Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration (i.e. using a Geographic information system) and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximise the potential range and independence of environmental variables at different spatial scales. Stratifying the state of Bavaria into five climate zones (reference period 1981–2010) and three prevailing land-use types, that is, near-natural, agriculture and urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean annual temperature gradient of 5.6–9.8°C and a spatial extent of ~310 × 310 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, that is, forests, grasslands, arable land or settlement (local climate gradient 4.5–10°C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with |r ≤ 0.33| and |r ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs. KW - study design KW - biodiversity KW - climate change KW - ecosystem functioning KW - insect monitoring KW - land use KW - space-for-time approach KW - spatial scales Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258270 VL - 13 IS - 2 ER - TY - JOUR A1 - Hardulak, Laura A. A1 - Morinière, Jérôme A1 - Hausmann, Axel A1 - Hendrich, Lars A1 - Schmidt, Stefan A1 - Doczkal, Dieter A1 - Müller, Jörg A1 - Hebert, Paul D. N. A1 - Haszprunar, Gerhard T1 - DNA metabarcoding for biodiversity monitoring in a national park: Screening for invasive and pest species JF - Molecular Ecology Resources N2 - DNA metabarcoding was utilized for a large‐scale, multiyear assessment of biodiversity in Malaise trap collections from the Bavarian Forest National Park (Germany, Bavaria). Principal component analysis of read count‐based biodiversities revealed clustering in concordance with whether collection sites were located inside or outside of the National Park. Jaccard distance matrices of the presences of barcode index numbers (BINs) at collection sites in the two survey years (2016 and 2018) were significantly correlated. Overall similar patterns in the presence of total arthropod BINs, as well as BINs belonging to four major arthropod orders across the study area, were observed in both survey years, and are also comparable with results of a previous study based on DNA barcoding of Sanger‐sequenced specimens. A custom reference sequence library was assembled from publicly available data to screen for pest or invasive arthropods among the specimens or from the preservative ethanol. A single 98.6% match to the invasive bark beetle Ips duplicatus was detected in an ethanol sample. This species has not previously been detected in the National Park. KW - biodiversity KW - DNA barcoding KW - invasive species KW - metabarcoding KW - monitoring KW - pest species Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217812 VL - 20 IS - 6 SP - 1542 EP - 1557 ER -