TY - JOUR A1 - Kunz, Meik A1 - Wolf, Beat A1 - Schulze, Harald A1 - Atlan, David A1 - Walles, Thorsten A1 - Walles, Heike A1 - Dandekar, Thomas T1 - Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics Analysis to the Development of Non-Invasive Diagnostic Tools JF - Genes N2 - Lung cancer is currently the leading cause of cancer related mortality due to late diagnosis and limited treatment intervention. Non-coding RNAs are not translated into proteins and have emerged as fundamental regulators of gene expression. Recent studies reported that microRNAs and long non-coding RNAs are involved in lung cancer development and progression. Moreover, they appear as new promising non-invasive biomarkers for early lung cancer diagnosis. Here, we highlight their potential as biomarker in lung cancer and present how bioinformatics can contribute to the development of non-invasive diagnostic tools. For this, we discuss several bioinformatics algorithms and software tools for a comprehensive understanding and functional characterization of microRNAs and long non-coding RNAs. KW - lung cancer KW - non-invasive biomarkers KW - miRNAs KW - lncRNAs KW - bioinformatics KW - early diagnosis KW - algorithm Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147990 VL - 8 IS - 1 ER - TY - JOUR A1 - Meder, Lydia A1 - König, Katharina A1 - Ozretić, Luka A1 - Schultheis, Anne M. A1 - Ueckeroth, Frank A1 - Ade, Carsten P. A1 - Albus, Kerstin A1 - Boehm, Diana A1 - Rommerscheidt-Fuss, Ursula A1 - Florin, Alexandra A1 - Buhl, Theresa A1 - Hartmann, Wolfgang A1 - Wolf, Jürgen A1 - Merkelbach-Bruse, Sabine A1 - Eilers, Martin A1 - Perner, Sven A1 - Heukamp, Lukas C. A1 - Buettner, Reinhard T1 - NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas JF - International Journal of Cancer N2 - Small cell lung cancers (SCLCs) and extrapulmonary small cell cancers (SCCs) are very aggressive tumors arising de novo as primary small cell cancer with characteristic genetic lesions in RB1 and TP53. Based on murine models, neuroendocrine stem cells of the terminal bronchioli have been postulated as the cellular origin of primary SCLC. However, both in lung and many other organs, combined small cell/non-small cell tumors and secondary transitions from non-small cell carcinomas upon cancer therapy to neuroendocrine and small cell tumors occur. We define features of "small cell-ness" based on neuroendocrine markers, characteristic RB1 and TP53 mutations and small cell morphology. Furthermore, here we identify a pathway driving the pathogenesis of secondary SCLC involving inactivating NOTCH mutations, activation of the NOTCH target ASCL1 and canonical WNT-signaling in the context of mutual bi-allelic RB1 and TP53 lesions. Additionaly, we explored ASCL1 dependent RB inactivation by phosphorylation, which is reversible by CDK5 inhibition. We experimentally verify the NOTCH-ASCL1-RB-p53 signaling axis in vitro and validate its activation by genetic alterations in vivo. We analyzed clinical tumor samples including SCLC, SCC and pulmonary large cell neuroendocrine carcinomas and adenocarcinomas using amplicon-based Next Generation Sequencing, immunohistochemistry and fluorescence in situ hybridization. In conclusion, we identified a novel pathway underlying rare secondary SCLC which may drive small cell carcinomas in organs other than lung, as well. KW - lung cancer KW - small cell lung cancer KW - achaete-scute homolog 1 KW - neurogenic locus notch homolog KW - retinoblastoma protein Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190853 VL - 138 IS - 4 ER -