TY - THES A1 - Weidenmüller, Anja T1 - From individual behavior to collective structure T1 - Von individuellem Verhalten zu kollektiven Strukturen N2 - The social organization of insect colonies has long fascinated naturalists. One of the main features of colony organization is division of labor, whereby each member of the colony specializes in a subset of all tasks required for successful group functioning. The most striking aspect of division of labor is its plasticity: workers switch between tasks in response to external challenges and internal perturbations. The mechanisms underlying flexible division of labor are far from being understood. In order to comprehend how the behavior of individuals gives rise to flexible collective behavior, several questions need to be addressed: We need to know how individuals acquire information about their colony's current demand situation; how they then adjust their behavior according; and which mechanisms integrate dozens or thousands of insect into a higher-order unit. With these questions in mind I have examined two examples of collective and flexible behavior in social bees. First, I addressed the question how a honey bee colony controls its pollen collection. Pollen foraging in honey bees is precisely organized and carefully regulated according to the colony's needs. How this is achieved is unclear. I investigated how foragers acquire information about their colony's pollen need and how they then adjust their behavior. A detailed documentation of pollen foragers in the hive under different pollen need conditions revealed that individual foragers modulate their in-hive working tempo according to the actual pollen need of the colony: Pollen foragers slowed down and stayed in the hive longer when pollen need was low and spent less time in the hive between foraging trips when pollen need of their colony was high. The number of cells inspected before foragers unloaded their pollen load did not change and thus presumably did not serve as cue to pollen need. In contrast, the trophallactic experience of pollen foragers changed with pollen need conditions: trophallactic contacts were shorter when pollen need was high and the number and probability of having short trophallactic contacts increased when pollen need increased. Thus, my results have provided support for the hypothesis that trophallactic experience is one of the various information pathways used by pollen foragers to assess their colony's pollen need. The second example of collective behavior I have examined in this thesis is the control of nest climate in bumble bee colonies, a system differing from pollen collection in honey bees in that information about task need (nest climate parameters) is directly available to all workers. I have shown that an increase in CO2 concentration and temperature level elicits a fanning response whereas an increase in relative humidity does not. The fanning response to temperature and CO2 was graded; the number of fanning bees increased with stimulus intensity. Thus, my study has evidenced flexible colony level control of temperature and CO2. Further, I have shown that the proportion of total work force a colony invests into nest ventilation does not change with colony size. However, the dynamic of the colony response changes: larger colonies show a faster response to perturbations of their colony environment than smaller colonies. Thus, my study has revealed a size-dependent change in the flexible colony behavior underlying homeostasis. I have shown that the colony response to perturbations in nest climate is constituted by workers who differ in responsiveness. Following a brief review of current ideas and models of self-organization and response thresholds in insect colonies, I have presented the first detailed investigation of interindividual variability in the responsiveness of all workers involved in a collective behavior. My study has revealed that bumble bee workers evidence consistent responses to certain stimulus levels and differ in their response thresholds. Some consistently respond to low stimulus intensities, others consistently respond to high stimulus intensities. Workers are stimulus specialists rather than task specialists. Further, I have demonstrated that workers of a colony differ in two other parameters of responsiveness: response probability and fanning activity. Response threshold, response probability and fanning activity are independent parameters of individual behavior. Besides demonstrating and quantifying interindividual variability, my study has provided empirical support for the idea of specialization through reinforcement. Response thresholds of fanning bees decreased over successive trials. I have discussed the importance of interindividual variability for specialization and the collective control of nest climate and present a general discussion of self-organization and selection. This study contributes to our understanding of individual behavior and collective structure in social insects. A fascinating picture of social organization is beginning to emerge. In place of centralized systems of communication and information transmission, insect societies frequently employ mechanisms based upon self-organization. Self-organization promises to be an important and unifying principle in physical, chemical and biological systems. N2 - Ein besonderes Merkmal sozialer Insekten ist die Arbeitsteilung. Die Mitglieder einer Kolonie führen jeweils unterschiedliche Arbeiten aus und wechseln, je nach Bedarfslage der Kolonie, flexibel zwischen den verschiedenen Tätigkeiten. Die Mechanismen dieser flexiblen Arbeitsteilung sind bislang weitgehend unverstanden. Wie erfahren einzelne Arbeiterinnen welche Tätigkeiten gerade notwendig sind? Nach welchen Regeln ändern sie ihr Verhalten, wenn sich die Anforderungen an die Kolonie ändern? Wie wird das Verhalten vieler Einzelindividuen so koordiniert, daß die Kolonie als Ganzes sinnvoll auf eine sich verändernde Umwelt reagieren kann? In der vorliegenden Arbeit bin ich diesen Fragen an zwei unterschiedlichen Systemen nachgegangen. Im ersten Kapitel dieser Arbeit untersuchte ich die Regulation des Pollensammelns bei Honigbienen. Pollen ist für Honigbienen eine wichtige Proteinquelle zur Aufzucht der Brut. Sowohl die Menge an Brut als auch die bereits im Stock vorhanden Menge an Pollen beeinflußt die Sammelaktivität. Bislang ist unklar, wie die Sammelbienen Information über den Pollenbedarf ihrer Kolonie erhalten und wie sie ihr Verhalten dementsprechend ändern. Meine Versuche zeigten, daß Pollensammlerinnen ihr Arbeitstempo der aktuellen Bedarfslage anpassen: Ist der Pollenbedarf der Kolonie hoch, verbringen sie wenig Zeit im Stock, ist ausreichend Pollen vorhanden, gehen sie ihrer Sammeltätigkeit langsamer nach. Während ihres Aufenthalts im Stock haben die Sammlerinnen eine Vielzahl trophallaktischer Kontakte mit anderen Bienen. Die Anzahl solcher Kontakte änderte sich mit dem Pollenbedarf der Kolonie: Bei hohem Pollenbedarf sind die trophallaktischen Kontakte kürzer und die Anzahl sehr kurzer Kontakte hoch. Diese Ergebnisse unterstützen die Hypothese, daß Änderungen in der trophallaktischen Erfahrung eine wichtige Informationsquelle über den aktuellen Pollenbedarf einer Kolonie darstellen. Das zweite Beispiel flexibler Arbeitsteilung, welches ich in dieser Arbeit untersucht habe, ist die Regulation des Nestklimas in Hummelkolonien. Dieses System unterscheidet sich von dem oben dargestellten grundlegend, da Information über Änderungen im Bedarf an Arbeitskraft jedem Koloniemitglied zugänglich ist. Jedes Koloniemitglied im Nest kann direkt erfahren wie sich das Nestklima ändert. Ich konnte zeigen, daß Hummelkolonien auf einen Temperaturanstieg und eine Zunahme der Kohlendioxidkonzentration im Nest mit Ventilationsverhalten reagieren. Einzelne Hummeln fächeln dabei mit ihren Flügeln und sorgen so für Evaporationskühlung bzw. eine verstärkte Belüftung des Nestes. Erhöhte Luftfeuchtigkeit löste diese Reaktion nicht aus. Die Anzahl fächelnder Hummeln war abhängig von den Temperatur/CO2 Werten, die Kolonie reagierte fein abgestimmt auf die aktuellen Bedingungen. Unabhängig von ihrer Größe investierten die untersuchten Kolonien einen bestimmten Anteil ihrer Arbeiterinnen in die Ventilation des Nestes. Große Kolonien unterschieden sich jedoch von kleinen Kolonien in ihrer Antwortgeschwindigkeit: Große Kolonien antworten schneller auf einen Temperatur / CO2 Anstieg als kleine. Die flexible und fein abgestimmte Kolonieantwort auf Veränderungen im Nestklima basiert auf dem Verhalten vieler Einzelindividuen. Im dritten Kapitel dieser Arbeit stellte ich aktuelle Ideen und Hypothesen zu Selbstorganisation und dem Einfluß interindividueller Variabilität auf Kolonieverhalten dar. Regulation des Nestklimas in Hummelkolonien ist ein ideales System um interindividuelle Variabilität und ihre Auswirkungen zu untersuchen. Ich konnte zum ersten Mal Unterschiede im Antwortverhalten aller an einem kollektiven Verhalten beteiligten Koloniemitglieder quantifizieren. Neben Unterschieden in Antwortschwellen, die in der Literatur zwar viel diskutiert, aber noch nie schlüssig nachgewiesen wurden, konnte ich zeigen, daß sich Arbeiterinnen einer Kolonie in zwei weiteren Parametern unterscheiden: Die Wahrscheinlichkeit auf einen Stimulus zu reagieren und die Dauer, mit der die Arbeiterinnen das Verhalten ausführen (Aktivität) ist zwischen Individuen unterschiedlich. Diese drei Parameter (Reaktionsschwelle, Antwortwahrscheinlichkeit und Aktivität) sind vermutlich unabhängige Parameter individuellen Verhaltens. Neben diesen interindividuellen Unterschieden konnte ich nachweisen, daß sich die Antwortschwellen verändern, je häufiger eine Hummel fächelt: Arbeiterinnen reagieren von Mal zu Mal auf niedrigere Stimulusintensitäten. Diese Ergebnisse sind für unser Verständnis von Arbeitsteilung und Spezialisierung bei sozialen Insekten von besonderer Bedeutung. In dieser Arbeit habe ich sowohl das Verhalten individueller Arbeiterinnen als auch die daraus resultierende kollektive Antwort der Kolonie untersucht. Es wird zunehmend deutlicher, daß dem faszinierenden Verhalten sozialer Insekten häufig nicht zentrale Informationsverarbeitung sondern Selbstorganisation zugrunde liegt. KW - Hummeln KW - Soziale Insekten KW - Thermoregulation KW - Arbeitsteilung KW - Bienenstaat KW - Pollen KW - Sammeln KW - Arbeitsteilung KW - Pollen KW - Nestklima KW - Thermoregultion KW - CO2 KW - Antwortschwellen KW - Selbstorgansation KW - social organization KW - division of labor KW - pollen foraging KW - nest climate KW - thermoregulation KW - CO2 KW - response threshold models KW - self-organization Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-2448 ER - TY - JOUR A1 - Keller, Alexander A1 - Grimmer, Gudrun A1 - Steffan-Dewenter, Ingolf T1 - Diverse Microbiota Identified in Whole Intact Nest Chambers of the Red Mason Bee Osmia bicornis (Linnaeus 1758) JF - PLoS One N2 - Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics. KW - bacteria KW - bacterial pathogens KW - bees KW - gut bacteria KW - honey bees KW - larvae KW - Pollen KW - Polymerase chain reaction Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97305 ER - TY - THES A1 - Danner, Nadja T1 - Honey bee foraging in agricultural landscapes T1 - Sammelverhalten von Honigbienen in der Agrarlandschaft N2 - 1. Today honey bee colonies face a wide range of challenges in modern agricultural landscapes which entails the need for a comprehensive investigation of honey bees in a landscape context and the assessment of environmental risks. Within this dissertation the pollen foraging of honey bee colonies is studied in different agricultural landscapes to gain insight into the use of pollen resources and the influence of landscape structure across the season. General suggestions for landscape management to support honey bees and other pollinators are derived. 2. Decoding of waggle dances and a subsequent spatial foraging analysis are used as methods in Chapters 4 and 5 to study honey bee colonies in agricultural landscapes. The recently developed metabarcoding of mixed pollen samples was applied for the first time in honey bee foraging ecology and allowed for a detailed analysis of pollen, that was trapped from honey bees in front hive entrances (Chapter 6). 3. Pollen identification through molecular sequencing and DNA barcoding has been proposed as an alternative approach to light microscopy, which still is a tedious and error-prone task. In this study we assessed mixed pollen probes through next-generation sequencing and developed a bioinformatic workflow to analyse these high-throughput data with a newly created reference database. To evaluate the feasibility, we compared results from classical identification based on light microscopy from the same samples with our sequencing results. Abundance estimations from sequencing data were significantly correlated with counted abundances through light microscopy. Next-generation sequencing thus presents a useful and efficient workflow to identify pollen at the genus and species level without requiring specialized palynological expert knowledge. 4. During maize flowering, four observation hives were placed in and rotated between 11 landscapes covering a gradient in maize acreage. A higher foraging frequency on maize fields compared to other landuse types showed that maize is an intensively used pollen resource for honey bee colonies. Mean foraging distances were significantly shorter for maize pollen than for other pollen origins, indicating that effort is put into collecting a diverse pollen diet. The percentage of maize pollen foragers did not increase with maize acreage in the landscape and was not reduced by grassland area as an alternative pollen resource. Our findings allow estimating the distance-related exposure risk of honey bee colonies to pollen from surrounding maize fields treated with systemic insecticides. 5. It is unknown how an increasing area of mass-flowering crops like oilseed rape (OSR) or a decrease of semi-natural habitats (SNH) change the temporal and spatial availability of pollen resources for honey bee colonies, and thus foraging distances and frequency in different habitat types. Sixteen observation hives were placed in and rotated between 16 agricultural landscapes with independent gradients of OSR and SNH area within 2 km to analyze foraging distances and frequencies. SNH and OSR reduced foraging distance at different spatial scales and depending on season, with possible benefits for the performance of honey bee colonies. Frequency of pollen foragers per habitat type was equally high for SNH, grassland and OSR fields, but lower for other crops and forest. In landscapes with a small proportion of SNH a significantly higher density of pollen foragers on SNH was observed, indicating the limitation of pollen resources in simple agricultural landscapes and the importance of SNH. 6. Quantity and diversity of collected pollen can influence the growth and health of honey bee colonies, but little is known about the influence of landscape structure on pollen diet. In a field experiment we rotated 16 honey bee colonies across 16 agricultural landscapes (see also Chapter 5), used traps to get samples of collected pollen and observed the intra-colonial dance communication to gain information about foraging distances. Neither the amount of collected pollen nor pollen diversity were related to landscape diversity. The revealed increase of foraging distances with decreasing landscape diversity suggests that honey bees compensate for a lower landscape diversity by increasing their pollen foraging range in order to maintain pollen amount and diversity. 7. Our results show the importance of diverse pollen resources for honey bee colonies in agricultural landscapes. Beside the risk of exposure to pesticides honey bees face the risk of nutritional deficiency with implications for their health. By modifying landscape composition and therefore availability of resources we are able to contribute to the wellbeing of honey bees. Agri-environmental schemes aiming to support pollinators should focus on possible spatial and temporal gaps in pollen availability and diversity in agricultural landscapes. N2 - 1. Honigbienen stehen heutzutage vor einer Vielzahl von Herausforderungen in der modernen Agrarlandschaft, was umfassende Untersuchungen von Honigbienen im Landschafskontext erforderlich macht. Im Rahmen dieser Arbeit wurde das Pollensammeln von Honigbienenvölkern in verschiedenen Agrarlandschaften studiert, um Einblick in die Nutzung von Pollenressourcen und auf den Einfluss der Landschaftsstruktur zu gewinnen. 2. Die Dekodierung von Schwänzeltänzen und eine anschließende räumliche Analyse des Sammelverhaltens werden als Methoden in den Kapiteln 4 und 5 eingesetzt, um Bienenvölker in Agrarlandschaften zu untersuchen. Das kürzlich entwickelte Metabarcoding von gemischten Pollenproben wurde zum ersten Mal in der Honigbienenökologie angewandt und ermöglichte eine detaillierte Analyse von Pollenproben, die per Pollenfallen vor den Stockeingängen gesammelt wurden (Kapitel 6). 3. Pollenbestimmung durch molekulare Sequenzierung und DNA Barcoding wurde als Alternative zur Lichtmikroskopie vorgeschlagen, die immer noch sehr mühsam und fehlerbehaftet ist. In dieser Studie bestimmten wir gemischte Pollenproben durch Next-Generation-Sequenzierung und entwickelten einen bioinformatischen Arbeitsablauf um diese Hochdurchsatz-Daten mit einer neu kreierten Referenzdatanbank zu analysieren. Um die Durchführbarkeit zu evaluieren verglichen wir Ergebnisse aus der klassischen Identifizierung via Lichtmikroskopie derselben Proben mit unseren Sequenzier-Ergebnissen. Häufigkeitsschätzungen auf Basis der Sequenzierdaten waren signifikant mit den gezählten Häufigkeiten via Lichtmikroskopie korreliert. Next-Generation-Sequenzierung stellt daher einen nützlichen und effizienten Arbeitsablauf dar, um Pollen auf dem Gattungs- und Artniveau zu bestimmen ohne spezielles palynologisches Expertenwissen zu benötigen. 4. Während der Maisblüte wurden vier Beobachtungsstöcke in 11 Landschaften mit einem Maisflächengradienten platziert und zwischen diesen rotiert. Maisfelder wurden intensiver genutzt als Flächen anderer Landnutzungstypen. Die mittleren Sammeldistanzen waren signifikant niedriger für Maispollen als Pollen anderer Herkunft, was darauf hinweist, dass Aufwand in das Sammeln einer diversen Pollendiät gesetzt wird. Der Anteil an Maispollensammlerinnen stieg nicht mit der Maisanbaufläche in der Landschaft und wurde nicht durch Grünlandfläche als alternative Pollenressource reduziert. Unsere Ergebnisse ermöglichen die Schätzung des entfernungsbezogenen Expositionsrisikos von Honigbienenvölker auf Pollen aus den umliegenden Maisfeldern, die mit systemischen Insektiziden behandelt werden. 5. Es ist nicht bekannt, wie eine Zunahme von Massentrachten wie Raps (OSR) oder eine Abnahme von halbnatürlichen Habitaten (SNH) die zeitliche und räumliche Verfügbarkeit von Pollenressourcen für die Honigbienen, und damit Sammeldistanzen und -frequenzen in verschiedenen Lebensraumtypen verändert. Sechzehn Beobachtungsstöcke wurden in 16 Agrarlandschaften mit unabhängigen Gradienten an OSR- und SNH-Fläche innerhalb von 2 km platziert und regelmäßig rotiert, um Sammeldistanzen und -frequenzen zu analysieren. SNH und OSR reduzierten die Sammeldistanzen auf verschiedenen räumlichen Skalen und je nach Saison, mit möglichen Vorteilen für die Leistungsfähigkeit von Bienenvölkern. Die Häufigkeit der Pollensammler pro Habitattyp war gleich hoch für SNH, Grünland und OSR, aber niedriger für andere Kulturen und Wald. In Landschaften mit einem kleinen Anteil von SNH wurde eine deutlich höhere Dichte von Pollensammlerinnen auf SNH beobachtet, was auf die Begrenzung der Pollenressourcen in einfachen Agrarlandschaften und die Bedeutung von SNH hinweist. 6. Menge und Diversität des gesammelten Pollens können das Wachstum und die Gesundheit von Honigbienenvölkern beeinflussen, aber es ist wenig über den Einfluss der Landschaftsstruktur auf die Pollendiät bekannt. In einem Feldexperiment rotierten wir 16 Honigbienenkolonien über 16 Agrarlandschaften (siehe auch Kapitel 5), nutzten Pollenfallen um Proben des gesammelten Pollens zu nehmen und beobachteten die intrakoloniale Tanzkommunikation, um Informationen über die Sammeldistanzen zu erhalten. Weder Pollenmenge noch -diversität waren von der Landschaftsdiversität abhängig. Der offenbarte Anstieg von Sammeldistanzen mit abnehmender Landschaftsdiversität legt nahe, dass Honigbienen durch die Erweiterung des Pollensammelbereichs eine niedrigere Landschaftsdiversität kompensieren, um Pollenmenge und -diversität zu erhalten. 7. Unsere Ergebnisse zeigen die Bedeutung eines diversen Pollenangebots für Bienenvölker in der Agrarlandschaft. Neben dem Risiko einer Exposition gegenüber Pestiziden, stehen Bienenvölker vor der Gefahr von Mangelernährung mit Auswirkungen auf ihre Gesundheit. Durch eine Änderung der Landschaftzusammensetzung und damit der Verfügbarkeit von Ressourcen können wir zum Wohlergehen der Honigbienen beitragen. Agrarumweltmaßnahmen mit dem Ziel Bestäuber zu unterstützen, sollten sich auf mögliche räumliche und zeitliche Lücken in der Pollenverfügbarkeit und Vielfalt in der Agrarlandschaft konzentrieren. KW - Apis mellifera KW - Zea mays KW - Resource Use KW - Exposure Risk KW - Oilseed Rape KW - foraging distances KW - Sammeldistanzen KW - semi-natural habitat KW - halbnatürliche Habitate KW - next-generation sequencing KW - pollen KW - Pollen KW - Next-Generation Sequenzierung KW - Landschaftsstruktur KW - landscape structure Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139322 ER - TY - THES A1 - Rüdenauer, Fabian T1 - Nutrition facts of pollen: nutritional quality and how it affects reception and perception in bees T1 - Nährwertinformationen von Pollen: Nährstoffzusammensetzung und wie diese sich auf Rezeption und Perzeption von Bienen auswirkt N2 - Nutrients belong to the key elements enabling life and influencing an organism’s fitness. The intake of nutrients in the right amounts and ratios can increase fitness; strong deviations from the optimal intake target can decrease fitness. Hence, the ability to assess the nutritional profile of food would benefit animals. To achieve this, they need the according nutrient receptors, the ability to interpret the receptor information via perceptive mechanisms, and the ability to adjust their foraging behavior accordingly. Additionally, eventually existing correlations between the nutrient groups and single nutrient compounds in food could help them to achieve this adjustment. A prominent interaction between food and consumer is the interaction between flowering plants (angiosperms) and animal pollinators. Usually both of the interacting partners benefit from this mutualistic interaction. Plants are pollinated while pollinators get a (most of the times) nutritional reward in form of nectar and/or pollen. As similar interactions between plants and animals seem to have existed even before the emergence of angiosperms, these interactions between insects and angiosperms very likely have co-evolved right from their evolutionary origin. Therefore, insect pollinators with the ability to assess the nutritional profile may have shaped the nutritional profile of plant species depending on them for their reproduction via selection pressure. In Chapter I of this thesis the pollen nutritional profile of many plant species was analyzed in the context of their phylogeny and their dependence on insect pollinators. In addition, correlations between the nutrients were investigated. While the impact of phylogeny on the pollen protein content was little, the mutual outcome of both of the studies included in this chapter is that protein content of pollen is mostly influenced by the plant’s dependence on insect pollinators. Several correlations found between nutrients within and between the nutrient groups could additionally help the pollinators to assess the nutrient profile of pollen. An important prerequisite for this assessment would be that the pollinators are able to differentiate between pollen of different plant species. Therefore, in Chapter II it was investigated whether bees have this ability. Specifically, it was investigated whether honeybees are able to differentiate between pollen of two different, but closely related plant species and whether bumblebees prefer one out of three pollen mixes, when they were fed with only one of them as larvae. Honeybees indeed were able to differentiate between the pollen species and bumblebees preferred one of the pollen mixes to the pollen mix they were fed as larvae, possibly due to its nutritional content. Therefore, the basis for pollen nutrient assessment is given in bees. However, there also was a slight preference for the pollen fed as larvae compared to another non-preferred pollen mix, at least hinting at the retention of larval memory in adult bumblebees. Chapter III looks into nutrient perception of bumblebees more in detail. Here it was shown that they are principally able to perceive amino acids and differentiate between them as well as different concentrations of the same amino acid. However, they do not seem to be able to assess the amino acid content in pollen or do not focus on it, but instead seem to focus on fatty acids, for which they could not only perceive concentration differences, but also were able to differentiate between. These findings were supported by feeding experiments in which the bumblebees did not prefer any of the pollen diets containing less or more amino acids but preferred pollen with less fatty acids. In no choice feeding experiments, bumblebees receiving a diet with high fatty acid content accepted undereating other nutrients instead of overeating fat, leading to increased mortality and the inability to reproduce. Hence, the importance of fat in pollen needs to be looked into further. In conclusion, this thesis shows that the co-evolution of flowering plants and pollinating insects could be even more pronounced than thought before. Insects do not only pressure the plants to produce high quality nectar, but also pressure those plants depending on insect pollination to produce high quality pollen. The reason could be the insects’ ability to receive and perceive certain nutrients, which enables them to forage selectively leading to a higher reproductive success of plants with a pollinator-suitable nutritional pollen profile. N2 - Nährstoffe gehören zu den zentralen Elementen, die das Leben an sich ermöglichen und die Fitness eines Organismus beeinflussen können. Nährstoffaufnahme in den richtigen Mengen und Verhältnissen kann die Fitness verbessern, starke Abweichungen von der optimalen Aufnahme können sie verschlechtern. Deshalb könnten Tiere von der Fähigkeit profitieren das Nährstoffprofil von Nahrung bewerten zu können. Dafür benötigten sie jedoch die passenden Nährstoffrezeptoren, die Fähigkeit die Rezeptorinformationen durch perzeptive Mechanismen zu interpretieren und ihr Sammelverhalten daran anzupassen. Eine zusätzliche Hilfe dabei könnten Korrelationen zwischen sowohl den Nährstoffgruppen als auch einzelnen Nährstoffen bieten. Eine bekannte Interaktion zwischen Nahrung und Konsument ist die zwischen Blühpflanzen (Angiospermen) und tierischen Bestäubern. Normalerweise profitieren beide Interaktionspartner von dieser mutualistischen Interaktion. Pflanzen werden bestäubt, während die Bestäuber eine (zumeist) nahrhafte Belohnung in Form von Nektar und/oder Pollen erhalten. Da ähnliche Interaktionen zwischen Pflanzen und Tieren vermutlich schon vor dem Auftreten der Angiospermen existierten, könnte sich diese Interaktion, im Speziellen mit Insekten, direkt vom evolutiven Startpunkt der Angiospermen aus koevolviert haben. Deshalb ist es möglich, dass Bestäuber mit der Fähigkeit das Nährstoffprofil von Pollen bewerten zu können, dieses bei von ihnen abhängigen Pflanzen durch Selektionsdruck formen konnten. Im Kapitel I dieser Thesis wurde das Nährstoffprofil von Pollen vieler Pflanzenarten im Kontext ihrer Phylogenie und ihrer Abhängigkeit von Insekten als Bestäubern analysiert. Außerdem wurden Korrelationen zwischen den Nährstoffen untersucht. Während die Phylogenie nur einen geringen Einfluss auf den Proteingehalt von Pollen haben könnte, ist der gemeinsame Nenner der beiden Studien in diesem Kapitel, dass der Proteingehalt des Pollens hauptsächlich von der Abhängigkeit der Pflanzen von Bestäubern bestimmt wird. Es wurden zudem einige Korrelationen sowohl in als auch zwischen den Nährstoffgruppen gefunden, die den Bestäubern helfen könnten das Nährstoffprofil von Pollen bewerten zu können. Eine wichtige Grundvoraussetzung für diese Bewertung wäre, dass die Bestäuber überhaupt dazu in der Lage sind zwischen Pollen von unterschiedlichen Pflanzenarten zu unterscheiden. Dies wird in Kapitel II behandelt, in dem untersucht wurde ob Honigbienen in der Lage sind zwischen Pollen zweier nah verwandter Pflanzenarten zu unterscheiden und ob Hummeln eine von drei Pollenmischungen bevorzugen, wenn sie nur mit einer davon als Larve in Kontakt kamen. Honigbienen war es tatsächlich möglich zwischen den Pollenarten zu unterscheiden und Hummeln bevorzugten eine bestimmte Pollenmischung gegenüber der, die sie als Larve erhalten hatten, möglicherweise aufgrund eines vorteilhaften Nährstoffprofils. Die Grundlage zur Nährstoffbewertung scheint bei Bienen also gegeben zu sein. Allerdings hatten die Hummeln auch eine leichte Präferenz für die Pollenmischung, die sie als Larve erhalten hatten gegenüber der dritten, nicht bevorzugten Pollenmischung, was zumindest darauf hindeuten könnte, dass Larvenerinnerungen bei erwachsenen Hummeln erhalten bleiben könnten. Kapitel III beschäftigt sich tiefergehend mit der Nährstoffwahrnehmung von Hummeln. Es wurde gezeigt, dass diese prinzipiell befähigt sind Aminosäuren wahrzunehmen als auch zwischen ihnen und verschiedenen Konzentrationen der gleichen Aminosäure zu unterscheiden. Allerdings scheinen sie entweder nicht in der Lage zu sein oder sich zumindest nicht darauf zu fokussieren den Aminosäuregehalt von Pollen zu bewerten, sondern sich eher auf Fettsäuren zu konzentrieren. Von diesen konnten sie nicht nur Konzentrationsunterschiede feststellen, sondern auch zwischen verschiedenen Fettsäuren im Pollen unterscheiden. Diese Ergebnisse wurden von denen in Fütterungsexperimenten gestützt, in denen die Hummeln gleiche Mengen von Pollen mit mehr oder weniger Aminosäuren aufnahmen, aber Pollen mit weniger Fettsäuren bevorzugten. In Experimenten, in denen die Hummeln keine Wahl hatten, nahmen die Hummeln mit einer Diät, die eine hohe Fettsäurekonzentration hatte, lieber in Kauf, dass sie zu wenig von den anderen Nährstoffen aufnahmen, als zu viel Fett, was zu einer erhöhten Mortalitätsrate und der Unfähigkeit sich zu reproduzieren führte. Deshalb sollten zukünftige Studien sich eingehender mit dem Fettsäuregehalt von Pollen beschäftigen. Zusammenfassend zeigt diese Thesis, dass die Koevolution von Pflanzen und bestäubenden Insekten ausgeprägter sein könnte, als bisher angenommen. Insekten setzen die Pflanzen nicht nur unter Druck qualitativ hochwertigen Nektar zu produzieren, sondern setzen vor allem auch die Pflanzen unter Druck, die von ihrer Bestäubung abhängig sind, qualitativ hochwertigen Pollen zu produzieren. Der Grund dafür könnte die Fähigkeit der Insekten sein, bestimmte Nährstoffe zu rezipieren und perzipieren und dann ihr Sammelverhalten so anzupassen, dass Pflanzen mit einem passenden Nährstoffprofil einen höheren Reproduktionserfolg haben. KW - Pollen KW - bumblebee*s KW - nutrients KW - nutrition KW - pollen KW - reception KW - perception KW - proboscis extension response KW - honeybee*s Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212548 ER -