TY - THES A1 - Nedvetsky, Pavel I. T1 - Regulation of the nitric oxide receptor, soluble guanylyl cyclase T1 - Regulation des Rezeptor des Stickstoffoxides löslicher Guanylylcyclase N2 - Soluble guanylyl cyclase (sGC) is the best established receptor for nitric oxide (NO) and regulates a great number of important physiological functions. Surprisingly, despite the wellappreciated roles of this enzyme in regulation of vascular tone, smooth muscle cell proliferation, platelet aggregation, renal sodium secretion, synaptic plasticity, and other functions, extremely little is known about the regulation of sGC activity and protein levels. To date, the only well-proven physiologically relevant sGC regulator is NO. In the present study, some additional possibilities for sGC regulation were shown. Firstly, we evaluated the ability of different NO donors to stimulate sGC. Significant differences in the sGC stimulation by SNP and DEA/NO were found. DEA/NO stimulated sGC much stronger than did SNP. Interestingly, no correlation between the sGC protein and maximal activity distribution was found in rat brain regions tested, suggesting the existence of some additional regulatory mechanisms for sGC. The failure of SNP to stimulate sGC maximally might be one of the reasons why the lack of correlation between the distribution of sGC activity and proteins in brain was not detected earlier. Prolonged exposure of endothelial cells to NO donors produced desensitization of the cGMP response. This desensitization cannot be explained by increased PDE activity, since PDE inhibitors were not able to prevent the NO donor-induced decrease of the maximal cGMP response in endothelial cells. The failure of SH-reducing agents to improve the cGMP response after its desensitization by NO suggests that a SH-independent mechanism mediates NO effects. Demonstration that the potency of the recently described activator of oxidized (heme-free) sGC, BAY58-2667, to stimulate sGC increases after prolonged exposure of the cells to an NO donor, DETA/NO, suggests that oxidation of heme may be a reason for NOinduced desensitization of sGC and decrease in sGC protein level. Indeed, the well-known heme-oxidizing agent ODQ produces a dramatic decrease in sGC protein levels in endothelial cells and BAY58-2667 prevents this effect. Although the mechanism of sGC activation and stabilization by BAY58-2667 is unknown, this substance is an interesting candidate to modulate sGC under conditions where sGC heme iron is oxidized. Very little is known about regulation of sGC by intracellular localization or translocation between different intracellular compartments. In the present study, an increase in sGC sensitivity to NO under membrane association was demonstrated. Treatment of isolated lung with VEGF markedly increased sGC in membrane fractions of endothelial cells. Failure of VEGF to stimulate sGC membrane association in cultured endothelial cells allows us to propose a complex mechanism of regulation of sGC membrane association and/or a transient character of sGC membrane attachment. A very likely mechanism for the attachment of sGC to membranes is via sGCinteracting proteins. These proteins may participate also in other aspects of sGC regulation. The role of the recently described sGC interaction partner, Hsp90, was investigated. Shortterm treatment of endothelial cells with an Hsp90 inhibitor does not affect NO donor or calcium ionophore-stimulated cGMP accumulation in the cells. However, inhibition of Hsp90 results in a rapid and dramatic decrease in sGC protein levels in endothelial cells. These effects were unrelated to changes in sGC transcription, since inhibition of transcription had much slower effect on sGC protein levels. In contrast, inhibitors of proteasomes abolished the reduction in sGC protein levels produced by an Hsp90 inhibitor, suggesting involvement of proteolytic degradation of sGC proteins during inhibition of Hsp90. All these data together suggest that Hsp90 is required to maintain mature sGC proteins. In conclusion, in the present study it was demonstrated that multiple mechanisms are involved in the regulation of sGC activity and its sensitivity to NO. Oxidation of sGC heme by NO seems to be one of the mechanisms for negative regulation of sGC in the presence of high or prolonged stimulation with NO. Another possible means of regulating sGC sensitivity to NO is via the intracellular translocation of the enzyme. It has been also demonstrated here that attachment of sGC to the membrane fraction results in an apparent increase in the enzyme sensitivity to NO. Additionally, Hsp90 was required to maintain sGC protein in endothelial and other cell types. However, we could not find any acute affect of Hsp90 on sGC activity, as reported recently. All these findings demonstrate that the regulation of sGC activity and protein level is a much more complex process than had been assumed earlier. N2 - Lösliche Guanylylcyclase (sGC) ist der Hauptrezeptor für Stickstoffmonooxid (NO), der sich an der Regulation zahlreicher physiologischer Funktionen beteiligt. Trotz ihrer sehr gut untersuchten Rolle in der Regulation der Blutgefässenrelaxation, synaptische Plastizität, Aggregation der Trombozyten, renale Sekretion und anderen wichtigen Funktionen, ist die Regulation der sGC selber noch nicht ausreichend verstanden. Der einzige, zur Zeit bekannte, physiologische Regulator der sGC ist NO. In der vorgelegten Arbeit wurde die Existenz anderer Möglichkeiten der sGC Regulation gezeigt. Zuerst, wurde die Fähigkeit verschiedener NO Donoren sGC zu stimulieren untersucht. DEA/NO stimulierte sGC viel stärker als SNP. Interessanterweise, wurde keine Korrelation zwischen der Verteilung des sGC Proteins und der Enzymaktivität unter Vmax- Bedingungen in verschiedenen Rattenhirnregionen gefunden. Das deutet auf zusätzliche Regulationsmechanismen hin. Die fehlende Fähigkeit von SNP sGC maximal zu stimulieren könnte ein Grund dafür sein, warum dieses Phänomen nicht schon früher gezeigt wurde. Langfristige Behandlung von Endothelzellen mit NO Donoren produzierte eine Desensitisierung der nachfolgenden cGMP Antwort. Diese Desensitisierung kann nicht durch erhöhte Phosphodiesterase-Aktivität erklärt werden, da Phosphodiesterasenhemmer die durch NO Donor verursachte Abnahme der cGMP Antwort nicht rückgängig macht. SHreduzierende Substanzen waren nicht in der Lage die cGMP Antwort zu verbessern, was zur Annahme führt, dass SH-Gruppenoxidation keine wichtige Rolle bei der Wirkung von NO auf sGC spielt. Es müssen daher andere Regulationsmechanismen vorhanden sein. Oxidation des Häms scheint ein möglicher Mechanismus der NO-induzierten sGC Desensitisierung. Einkürzlich beschriebener Aktivator der oxidierten (bzw. Häm-freien) sGC, BAY58-2667, stimulierte sGC nach Vorbehandlung mit NO Donoreb stärker als ohne Vorbehandlung. Es wird vermutet, dass oxidierte sGC verstärkt abgebaut wird was die durch NO oder Häm oxidierende Substanzen induzierte sGC Proteinabnahme erklären würde. Tatsächlich, nahm sGC Proteinlevel nach der Behandlung mit der Häm oxidierenden Substanz, ODQ, ab. BAY58-2667 verhinderte diesen Effekt. Ferner erhöht die Membranassoziation von sGC derer Empfindlichkeit gegenüber NO. Die Membranassoziation der sGC in Endothelzellen ist reguliert. Behandlung isolierter Lunge mit VEGF erhöht den Anteil an membrangebundener sGC in Endothelzellen dramatisch. In kultivierten Endothelzellen könnte VEGF die Membranassoziation jedoch nicht stimulieren, was einen komplexen Mechanismus der Membranassoziation der sGC in vivo vermuten lässt. Wenig ist bekannt über die Interaktionen von sGC mit anderen Protein und der möglichen Rolle dieser Interaktionen bei der Regulation des Enzyms. Proteininteraktionen scheinen aber ein möglicher Mechanismus für die Membranassoziation der sGC zu sein. Aus diesem Grund wurde die Rolle eines vor kurzem beschriebenen sGC-bindenden Proteins, Hsp90, auf die sGC Regulation untersucht. Kurzfristige Behandlung der Endothelzellen mit Hsp90 Inhibitoren hat keine Auswirkung auf NO Donor- und Calciumionophore-stimulierte cGMP-Produktion. Langfristige Hemmung von Hsp90 führte dagegen zur schnellen und deutlichen Abnahme des sGC Proteins. Dieser Effekt ist nicht durch eine Veränderung der Translation zu erklären, weil Tranlationshemmer einen viel langsameren sGC Abfall verursachten. Im Gegenteil, konnte ein Proteasomeninhibitor, MG132, die Effekte von Hsp90 Hemmern rückgängig machen. Das lässt eine proteolytische Abbau der sGC für die Effekte von Hsp90 Hemmer verantwortlich machen. Diese Daten deuten darauf hin, dass Hsp90 für Aufrechterhaltung des Enzyms notwendig ist. Zusammenfassend, wurde in der vorliegenden Arbeit gezeigt, dass sGC Aktivität und ihre Empfindlichkeit gegenüber ihren Aktivator NO durch multiple Faktoren beeinflusst werden kann. Oxidation des Häms durch NO könnte ein Mechanismus der negativen Regulation der sGC bei dauernd erhöhter Konzentration von NO sein. Ein zusätzlicher Mechanismus der Regulation der Empfindlichkeit der sGC gegenüber NO scheint die intrazellulare Translokation zu sein. Wir konnten hier zeigen, das die Membranassoziation der sGC ihre Empfindlichkeit gegenüber NO erhöht. Auch dieProteinlevel der sGC scheinen unter Kontrolle verschiedener Faktoren zu sein. Einer davon ist Hsp90, der für die Aufrechterhaltung des sGC Proteins sowohl in Endothelzellen als auch in anderen Zelltypen notwendig ist. Alle diese Daten zeigen, dass Regulation der sGC ein viel komplexerer Vorgang ist als bis her angenommen wurde und eröffnen interessante neue Forschungsrichtungen innerhalb dieses wichtigen Signalweges. KW - Guanylatcyclase KW - Regulation KW - lösliche Guanylylcyclase KW - cGMP KW - Häm KW - Hsp90 KW - soluble guanylyl cyclase KW - cGMP KW - heme KW - Hsp90 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7046 ER - TY - THES A1 - Fackler, Marc T1 - Biochemical characterization of GAS2L3, a target gene of the DREAM complex T1 - Biochemische Charakterisierung von GAS2L3, ein Zielgen des DREAM Komplex N2 - GAS2L3 was identified recently as a target gene of the DREAM complex (Reichert et al., 2010; Wolter et al., 2012). It was shown that GAS2L3 is expressed in a cell cycle specific manner and that depletion of the protein leads to defects in cytokinesis and genomic instability (Wolter et al., 2012). Major aim of this thesis was, to further characterize the biochemical properties and physiological function of GAS2L3. By in vitro co-sedimentation and bundling assays, GAS2L3 was identified as a cytoskeleton associated protein which bundles, binds and crosslinks F-actin and MTs. GST pulldown assays and co-immunoprecipitation experiments revealed that GAS2L3 interacts in vitro and in vivo with the chromosomal passenger complex (CPC), a very important regulator of mitosis and cytokinesis, and that the interaction is mediated by the GAR domain of GAS2L3 and the C-terminal part of Borealin and the N-terminal part of Survivin. Kinase assays showed that GAS2L3 is not a substrate of the CPC but is strongly phosphorylated by CDK1 in vitro. Depletion of GAS2L3 by shRNA influenced protein stability and activity of the CPC. However pharmacological studies showed that the decreased CPC activity is not responsible for the observed cytokinesis defects upon GAS2L3 depletion. Immunofluorescence experiments revealed that GAS2L3 is localized to the constriction zone by the CPC in a GAR dependent manner and that the GAR domain is important for proper protein function. New interacting proteins of GAS2L3 were identified by stable isotope labelling by amino acids in cell culture (SILAC) in combination with tandem affinity purification and subsequent mass spectrometrical analysis. Co-immunoprecipitation experiments further confirmed the obtained mass spectrometrical data. To address the physiological function of GAS2L3 in vivo, a conditional and a non-conditional knockout mouse strain was established. The non-conditional mouse strain showed a highly increased mortality rate before weaning age probably due to heart failure. The physiological function of GAS2L3 in vivo as well as the exact reason for the observed heart phenotype is not known at the moment. N2 - GAS2L3 wurde vor kurzem als Zielgen des DREAM Komplex identifiziert (Reichert et al., 2010; Wolter et al., 2012). Es konnte gezeigt werden, dass die Expression von GAS2L3 Zellzyklus abhängig reguliert wird und dass Depletion des Proteins zu Fehlern in der Zytokinese und genomischer Instabilität führt (Wolter et al., 2012). Hauptziel dieser Doktorarbeit war es, GAS2L3 hinsichtlich seiner biochemischen Eigenschaften und physiologischer Funktion näher zu charakterisieren. Unter Verwendung verschiedener in vitro Experimente konnte gezeigt werden, dass GAS2L3 sowohl F-Aktin als auch Mikrotubuli binden, bündeln und quervernetzen kann. In vitro und in vivo Protein-Protein Interaktionsexperimente zeigten, dass GAS2L3 mit dem „chromosomal passenger complex“ (CPC), einem wichtigen Mitose- und Zytokineseregulator, interagiert und dass diese Interaktion durch die GAR Domäne von GAS2L3 und den C-Terminus von Borealin beziehungsweise den N-terminus von Survivin vermittelt wird. Phosphorylierungsexperimente zeigten deutlich, dass GAS2L3 kein Substrat des CPC ist, jedoch von CDK1 phosphoryliert wird. Zellbiologische Experimente belegten, dass Depletion von GAS2L3 mittels shRNA die Proteinstabilität und Aktivität des CPC beeinflusst. Experimente mit einem chemischen Aurora B Inhibitor dokumentierten, dass die verringerte CPC Aktivität nicht die Ursache der beobachteten Zytokinesefehler nach GAS2L3 Depletion ist. Immunfluoreszenzexperimente machten deutlich, dass GAS2L3 mit Hilfe des CPC an der Abschnürungszone lokalisiert wird und dass die Lokalisation abhängig von der GAR Domäne erfolgt. Mit Hilfe von SILAC in Kombination mit Tandem-Affinitätsaufreinigung und anschließender massenspektrometrischer Auswertung wurden neue Proteininteraktoren von GAS2L3 identifiziert. Protein-Protein Interaktionsexperimente bestätigten die massenspektrometrisch ermittelten Daten. Um die physiologische Funktion von GAS2L3 in vivo näher analysieren zu können, wurden verschiedene Knockout Mauslinien etabliert. Die nicht-konditionelle Mauslinie zeigte erhöhte Sterblichkeit vor dem Absetzalter wahrscheinlich verursacht durch Herzversagen. Die genaue physiologische Funktion von GAS2L3 und der Grund für den beobachteten Herzphänotyp sind momentan noch unbekannt. KW - Zellzyklus KW - Zellteilung KW - Cytoskeleton Chromosomal Passenger Complex Interaction GAR Domain KW - Regulation KW - Molekulargenetik KW - GAS2L3 KW - Chromosomal Passenger Complex Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-103394 ER - TY - THES A1 - Sibilski, Claudia T1 - Identification and characterization of the novel mKSR1 phosphorylation site Tyr728 and its role in MAPK signaling T1 - Identifizierung und Charakterisierung der neuartigen mKSR1-Phosphorylierungsstelle Tyr728 und deren Rolle in der MAPK-Signalkaskade N2 - In mammals, KSR1 functions as an essential scaffold that coordinates the assembly of RAF/MEK/ERK complexes and regulates intracellular signal transduction upon extracellular stimulation. Aberrant activation of the equivalent MAPK signaling pathway has been implicated in multiple human cancers and some developmental disorders. The mechanism of KSR1 regulation is highly complex and involves several phosphorylation/dephosphorylation steps. In the present study, a number of novel in vivo phosphorylation sites were detected in mKSR1 by use of mass spectrometry analysis. Among others, Tyr728 was identified as a unique regulatory residue phosphorylated by LCK, a Src kinase family member. To understand how phosphorylation of Tyr728 may regulate the function of KSR1 in signal transduction and cellular processes, structural modeling and biochemical studies were integrated in this work. Computational modeling of the mKSR1(KD) protein structure revealed strong hydrogen bonding between phospho-Tyr728 and the residues surrounding Arg649. Remarkably, this pattern was altered when Tyr728 was non-phosphorylated or substituted. As confirmed by biochemical analysis, Arg649 may serve as a major anchor point for phospho-Tyr728 in order to stabilize internal structures of KSR1. In line with the protein modeling results, mutational studies revealed that substitution of Tyr728 by phenylalanine leads to a less compact interaction between KSR1 and MEK, a facilitated KSR1/B-RAF binding and an increased phosphorylation of MEK in complex with KSR1. From these findings it can be concluded that phospho-Tyr728 is involved in tightening the KSR1/MEK interaction interface and in regulating the phosphorylation of KSR1-bound MEK by either RAF or KSR1 kinases. Beside the Tyr728, Ser722 was identified as a novel regulatory phosphorylation site. Amino acid exchanges at the relevant position demonstrated that Ser722 regulates KSR1-bound MEK phosphorylation without affecting KSR1/MEK binding per se. Due to its localization, Ser722 might consequently control the catalytic activity of KSR1 by interfering with the access of substrate (possibly MEK) to the active site of KSR1 kinase. Together with Ser722, phosphorylated Tyr728 may further positively affect the kinase activity of KSR1 as a consequence of its vicinity to the activation and catalytic loop in the KSR1(KD). As revealed by structural modeling, phospho-Tyr728 builds a hydrogen bond with the highly conserved Lys685. Consequently, phospho-Tyr728 has a stabilizing effect on internal structures involved in the catalytic reaction and possibly enhances the phosphate transfer within the catalytic cleft in KSR1. Considering these facts, it seems very likely that the LCK-dependent phosphorylation of Tyr728 plays a crucial role in the regulation of KSR1 catalytic activity. Results of fractionation and morphology analyses revealed that KSR1 recruits LCK to cytoskeleton for its phosphorylation at Tyr728 suggesting that this residue may regulate cytoskeleton dynamics and, consequently, cell motility. Beside that, phosphorylation of Tyr728 is involved in the regulation of cell proliferation, as shown by a significantly reduced population doubling time of KSR1-Y728F cells compared to cells expressing wild type KSR1. Taken together, tyrosine phosphorylation in KSR1 uncovers a new link between Src family kinases and MAPK signaling. Tyr728, the novel regulatory phosphorylation site in murine KSR1, may coordinate the transition between the scaffolding and the catalytic function of KSR1 serving as a control point used to fine-tune cellular responses. N2 - KSR1 fungiert bei Säugetieren als zentrales Gerüstprotein, welches die Anordnung von RAF/MEK/ERK-Komplexen koordiniert und die intrazelluläre Signalweiterleitung nach extrazellulärer Stimulation reguliert. Eine abweichende Aktivierung des entsprechenden MAPK-Signalwegs wurde mit vielen humanen Krebsformen und einigen Entwicklungsstörungen in Verbindung gebracht. Der Mechanismus der KSR1-Regulierung ist hochgradig komplex und involviert mehrfach Schritte der Phosphorylierung/Dephosphorylierung. In der vorliegenden Studie wurden etliche neue in-vivo-Phosphorylierungsstellen in mKSR1 mittels massenspektrometrischer Analyse entdeckt. Neben anderen wurde Tyr728 als besonderer regulatorischer Rest identifiziert, welcher durch LCK, einem Mitglied der Src-Kinase-Familie, phosphoryliert wird. Um zu verstehen wie die Phosphorylierung von Tyr728 die Funktion von KSR1 innerhalb der Signalweiterleitung und zellulärer Prozesse regulieren könnte, wurden strukturelle Modellierungen und biochemische Untersuchungen in diese Arbeit integriert. Die Computermodellierung der mKSR1(KD)-Proteinstruktur zeigte starke Wasserstoff- brückenbindungen zwischen Phospho-Tyr728 und den Resten in der Umgebung von Arg649 auf. Dieses Muster war auffällig verändert, wenn Tyr728 nicht phosphoryliert oder substituiert war. Wie anhand biochemischer Analyse untermauert wurde, könnte Arg649 für phospho-Tyr728 als Hauptankerpunkt dienen, um interne Strukturen in KSR1 zu stabilisieren. In Übereinstimmung mit den Ergebnissen der Proteinmodellierung enthüllten die Mutationsstudien, dass die Substitution von Tyr728 mit Phenylalanin zu einer weniger kompakten Interaktion zwischen KSR1 und MEK, einer erleichterten KSR1/B-RAF-Bindung und einer ansteigenden Phosphorylierung von MEK im Komplex mit KSR1 führt. Anhand dieser Erkenntnisse kann man rückschließen, dass Phospho-Tyr728 in die Verstärkung der Interaktionen innerhalb der KSR1/MEK-Grenzfläche und in die Regulierung der Phosphorylierung von KSR1-gebundenem MEK durch entweder RAF- oder KSR1-Kinasen involviert ist. Neben Tyr728 wurde Ser722 als eine neuartige regulatorische Phosphorylierungsstelle identifiziert. Aminosäureaustausche an der betreffenden Position demonstrierten, dass Ser722 die Phosphorylierung von KSR1-gebundenem MEK reguliert ohne die KSR1/MEK-Bindung selbst zu beeinträchtigen. Bedingt durch seine Lokalisierung könnte Ser722 folglich die katalytische Aktivität von KSR1 kontrollieren, indem es den Zugang des Substrates (möglicherweise MEK) zur aktiven Seite der KSR1-Kinase behindert. Zusammen mit Ser722 könnte phosphoryliertes Tyr728 ferner die Kinaseaktivität von KSR1 positiv beeinflussen, infolge von dessen Nähe zur Aktivierungs- und katalytischen Schleife in der KSR1(KD). Wie mittels Strukturmodellierung offengelegt wurde, bildet Phospho-Tyr728 eine Wasserstoffbrücke mit dem hochgradig konservierten Lys685 aus. Folglich hat Phospho-Tyr728 einen stabilisierenden Effekt auf interne Strukturen, welche in die katalytische Reaktion involviert sind, und erleichtert möglicherweise den Phosphattransfer innerhalb der katalytischen Spalte in KSR1. In Anbetracht dieser Fakten scheint es sehr wahrscheinlich, dass die LCK-abhängige Phosphorylierung von Tyr728 eine äußerst wichtige Rolle in der Regulierung der katalytischen Aktivität von KSR1 spielt. Die Ergebnisse der Fraktionierungs- und Morphologieanalysen enthüllten, dass KSR1 für die Phosphorylierung an Tyr728 LCK zum Zytoskelett rekrutiert, was darauf hindeutet, dass dieser Rest die Dynamik des Zytoskeletts und folglich Zellmotilität regulieren könnte. Darüber hinaus ist die Phosphorylierung von Tyr728 in die Regulierung der Zellproliferation involviert, wie anhand einer bedeutend reduzierten Populationsverdopplungszeit von KSR1-Y728F-Zellen im Vergleich zu Zellen, welche wildtypisches KSR1 exprimieren, gezeigt wurde. Zusammenfassend lässt sich sagen, dass die Tyrosin-Phosphorylierung in KSR1 eine neue Verknüpfung zwischen Kinasen der Src-Familie und der MAPK-Signalwirkung enthüllt. Tyr728, die neuartige regulatorische Phosphorylierungsstelle in Maus-KSR1, könnte den Übergang zwischen der Gerüst- und der katalytischen Funktion von KSR1 koordinieren und damit als Kontrollpunkt dienen, um zelluläre Reaktionen fein abzustimmen. KW - MAP-Kinase KW - Signaltransduktion KW - Regulation KW - tyrosine phosphorylation KW - KSR1 KW - LCK KW - MAPK KW - phosphorylation KW - signaling Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114672 ER -