TY - THES A1 - Kistenpfennig, Christa T1 - Rhodopsin 7 and Cryptochrome - circadian photoreception in Drosophila T1 - Rhodopsin 7 und Cryptochrome - circadiane Photorezeption in Drosophila N2 - Many organisms evolved an endogenous clock to adapt to the daily environmental changes caused by the earth’s rotation. Light is the primary time cue (“Zeitgeber”) for entrainment of circadian clocks to the external 24-h day. In Drosophila, several visual pigments are known to mediate synchronization to light: The blue-light photopigment Cryptochrome (CRY) and six well-described rhodopsins (Rh1-Rh6). CRY is present in the majority of clock neurons as well as in the compound eyes, whereas the location of rhodopsins is restricted to the photoreceptive organs – the compound eyes, the ocelli and the HB-eyelets. CRY is thought to represent the key photoreceptor of Drosophila’s circadian clock. Nevertheless, mutant flies lacking CRY (cry01) are able to synchronize their locomotor activity rhythms to light-dark (LD) cycles, but need significantly longer than wild-type flies. In this behavior, cry01 mutants strongly resemble mammalian species that do not possess any internal photoreceptors and perceive light information exclusively through their photoreceptive organs (eyes). Thus, a mammalian-like phase-shifting behavior would be expected in cry01 flies. We investigated this issue by monitoring a phase response curve (PRC) of cry01 and wild-type flies to 1-h light pulses of 1000 lux irradiance. Indeed, cry01 mutants produced a mammalian-similar so called type 1 PRC of comparatively low amplitude (< 25% of wild-type) with phase delays to light pulses during the early subjective night and phase advances to light pulses during the late subjective night (~1 h each). Despite the predominant role of CRY, the visual system contributes to the light sensitivity of the fly’s circadian clock, mainly around dawn and dusk. Furthermore, this phase shifting allows for the slow re-entrainment which we observed in cry01 mutants to 8-h phase delays of the LD 12 h:12 h cycle. However, cry01 also showed surprising differences in their shifting ability: First of all, their PRC was characterized by a second dead zone in the middle of the subjective night (ZT17-ZT19) in addition to the usual unresponsiveness during the subjective day. Second, in contrast to wild-type flies, cry01 mutants did not increase their shift of activity rhythms neither in response to longer stimuli nor to light pulses of higher irradiance. In contrast, both 6-h light pulses of 1000 lux and 1-h light pulses of 10,000 lux light intensity during the early subjective night even resulted in phase advances instead of the expected delays. Thus, CRY seems to be not only responsible for the high light sensitivity of the wild-type circadian clock, but is apparently also involved in integrating and processing light information. Rhodopsin 7 (Rh7) is a yet uncharacterized protein, but became a good photoreceptor candidate due to sequence similarities to the six known Drosophila Rhs. The second part of this thesis investigated the expression pattern of Rh7 and its possible functions, especially in circadian photoreception. Furthermore, we were interested in a potential interaction with CRY and thus, tested cry01 and rh70 cry01 mutants as well. Rh1 is the main visual pigment of the Drosophila compound eye and expressed in six out of eight photoreceptors cells (R1-R6) in each of the ~800 ommatidia. Motion vision depends exclusively on Rh1 function but, moreover, Rh1 plays an important structural role and assures proper photoreceptor cell development and maintenance. In order to investigate its possible photoreceptive function, we expressed Rh7 in place of Rh1. Rh7 was indeed able to overtake the role of Rh1 in both aspects: It prevented retinal degeneration and mediated the optomotor response (OR), a motion vision-dependent behavior. At the transcriptional level, rh7 is expressed at approximately equal amounts in adult fly brains and retinas. Due to a reduced specificity of anti-Rh7 antibodies, we could not verify this result at the protein level. However, analysis of rh7 null mutants (rh70) suggested different Rh7 functions in vivo. Previous experiments strongly indicated an increased sensitivity of the compound eyes in the absence of Rh7 and suggested impaired light adaptation. We aimed to test this hypothesis at the levels of circadian photoreception. Locomotor activity rhythms are a reliable output of the circadian clock. Rh70 mutant flies generally displayed a wild-type similar bimodal activity pattern comprising morning (M) and evening (E) activity bouts. Activity monitoring supported the proposed “shielding” function, since rh70 mutants behaved like wild-type flies experiencing high irradiances. Under all investigated conditions, their activity peaks lay further apart resulting in a prolonged midday break. The behavior of cry01 mutants was mainly characterized by an unexpectedly high flexibility in the timing of M and E activity bouts which allowed tracking of lights-on and lights-off even under extreme photoperiods. Activity profiles of the corresponding rh70 cry01 double mutants reflected neither synergistic nor antagonistic effects of Rh7 and CRY and were dominated by a broad E activity peak. In the future, the different circadian phenotypes will be further investigated on the molecular level by analysis of clock protein cycling in the underlying pacemaker neurons. The work of this thesis confirmed that Rh7 is indeed able to work as a photoreceptor and to initiate the classical phototransduction cascade. On the other hand, it provided further evidence at the levels of circadian photoreception that Rh7 might serve as a shielding pigment for Rh1 in vivo, thereby mediating proper light adaptation. N2 - Viele Lebewesen haben eine endogene (circadiane) Uhr entwickelt, um sich an die im 24-Stunden-Rhythmus variierenden Umweltbedingungen anzupassen, die auf der Erdrotation beruhen. Zur Synchronisation auf den externen 24-Stunden-Tag nutzen circadiane Uhren in erster Linie Licht als Zeitgeber. An dieser Lichtsynchronisation sind bei Drosophila nachweislich eine Reihe von Sehpigmenten, der Blaulicht Photorezeptor Cryptochrom (CRY) sowie sechs bekannte Rhodopsine (Rh1-Rh6), beteiligt. CRY ist sowohl in der Mehrheit der Uhrneuronen als auch in den Komplexaugen zu finden. Die Lokalisation der Rhodopsine ist im Gegensatz dazu auf die Photorezeptoren – die Komplexaugen, die Ocellen und die HB-Äuglein – beschränkt. CRY gilt als der entscheidende Photorezeptor in der circadianen Uhr von Drosophila. Zwar können Mutanten, die kein CRY besitzen (cry01), ihre Laufaktivitätsrhythmen durch Licht-Dunkel-Zyklen synchronisieren, jedoch brauchen sie dafür mehrere Tage und damit erheblich länger als wildtypische Fliegen. In diesem Verhalten ähneln cry01-Mutanten den Säugetieren, die nicht über interne Photorezeptoren verfügen und Licht somit ausschließlich über ihre Lichtsinnesorgane (Augen) wahrnehmen. Demnach wären bei cry01-Fliegen säugetierähnliche Phasenverschiebungen des Laufaktivitäts-rhythmus auf Lichtpulse zu erwarten. Um diesen Sachverhalt zu untersuchen, wurde sowohl für cry01-Mutanten als auch für Wildtyp-Fliegen eine Phasenresponsekurve (PRC) aufgezeichnet, wobei einstündige Lichtpulse mit einer Intensität von 1000 lux als Stimulus dienten. Wir erhielten für die cry01-Mutanten tatsächlich eine säugetierähnliche PRC, welche auch als so genannte Typ 1 PRC bezeichnet wird und sich durch eine im Vergleich zum Wildtyp verringerte Amplitude (< 25%) auszeichnete. Die dabei beobachteten maximalen Phasenverschiebungen betrugen ungefähr eine Stunde. Dies galt sowohl für Lichtpulse, die in der ersten Hälfte der subjektiven Nacht gegeben wurden und die Laufaktivität verzögerten (nach hinten verschoben), als auch für Lichtpulse, die in der zweiten Hälfte der subjektiven Nacht gegeben wurden und die Laufaktivität beschleunigten (nach vorne verschoben). Die für cry01-Mutanten ermittelten Reaktionen auf einstündige Lichtpulse erklären die langsame Resynchronisation der Mutanten auf Phasenverschiebungen des Licht-Dunkel-Zyklus (LD-Zyklus). Allerdings zeigte die PRC von cry01-Mutanten auch überraschende Besonderheiten, die bisher für kein Tier berichtet wurden. Üblicherweise hat eine PRC eine so genannte „Tot-Zone“ am subjektiven Tag, d. h. die Tiere reagieren nicht auf Lichtreize, die während des subjektiven Tages verabreicht werden. Die PRC der cry01-Mutanten zeichnete sich durch eine zweite solche Tot-Zone in der Mitte der subjektiven Nacht (ZT17-ZT19) aus. Außerdem konnten die Phasenverschiebungen in cry01-Mutanten weder durch eine Verlängerung noch durch eine Verstärkung des Reizes gesteigert werden. Dies steht im Gegensatz zu wildtypischen Fliegen und anderen Tieren, deren PRC dosisabhängig ist. Bei cry01-Mutanten riefen dagegen sowohl sechsstündige Lichtpulse der zuvor verwendeten Intensität (1000 lux) als auch einstündige Lichtpulse hoher Intensität (10.000 lux) sogar gegenteilige Effekte auf die Phasenverschiebung hervor. Die cry01-Mutanten reagierten auf den Stimulus, der jeweils in der ersten Nachthälfte einsetzte, unter beiden Bedingungen mit einer Vorverschiebung ihres Aktivitätsrhythmus anstatt mit der eigentlich erwarteten Verzögerung. Obwohl CRY sicher die wichtigste Rolle einnimmt, trägt auch das visuelle System zur Lichtsensitivität und Synchronisation der inneren Uhr der Fliege bei. Dies ist vor allem morgens und abends in der Dämmerung der Fall. Cry01-Mutanten reagierten auf Lichtpulse, die morgens oder abends gegeben wurden, mit den oben beschriebenen einstündigen Phasenverschiebungen. Dies reicht aus, um die Aktivität der Fliegen auf einen Licht-Dunkel-Zyklus zu synchronisieren. Rhodopsin 7 (Rh7) ist ein noch nahezu unbeschriebenes Protein, das Ähnlichkeiten in seiner Aminosäuresequenz zu den bereits bekannten Drosophila-Rhodopsinen besitzt und daher als potentieller neuer Photorezeptor betrachtet wird. Der zweite Teil dieser Arbeit beschäftigte sich mit dem Expressionsmuster sowie den möglichen Funktionen von Rh7, insbesondere in der circadianen Photorezeption. Darüber hinaus wurden rh70 cry01-Doppelmutanten getestet, um eine eventuelle Interaktion zwischen Rh7 und CRY zu untersuchen. Rh1, das in jeweils sechs von acht Photorezeptorzellen (R1-R6) der insgesamt rund 800 Ommatidien exprimiert wird, stellt das häufigste Photopigment im Komplexauge von Drosophila dar. Zum einen vermittelt Rh1 die Wahrnehmung von Bewegungen, zum anderen besitzt es wichtige strukturelle Aufgaben, da es sowohl eine normale Entwicklung der Photorezeptorzellen als auch deren Erhaltung gewährleistet. Um eine mögliche Beteiligung in der Lichtwahrnehmung zu untersuchen, wurde Rh7 anstelle von Rh1 exprimiert. Rh7 konnte in der Tat Rh1 unter beiden Aspekten ersetzen. Seine Expression verhinderte nicht nur die Degeneration der Retina, sondern ermöglichte zudem optomotorische Reaktionen, die auf einem intakten Bewegungssehen beruhen. In adulten Fliegen wird Rh7 auf Ebene der Transkription in vergleichbaren Mengen im Gehirn und in der Retina exprimiert. Aufgrund der geringen Spezifität der anti-Rh7 Antikörper konnte dieses Ergebnis leider nicht auf Proteinebene bestätigt werden. Die Untersuchung von rh7-Knockout-Mutanten (rh70) befürwortete jedoch eine alternative Funktion von Rh7 in vivo. In vorangegangenen Versuchen führte der Verlust von Rh7 zu einer gesteigerten Sensitivität der Komplexaugen, was wahrscheinlich auf einer verminderten Lichtadaptation beruhte. Wir versuchten diese Hypothese auf Ebene der circadianen Photorezeption zu überprüfen und zeichneten dazu die Laufaktivität der Fliegen auf, da ihr Aktivitätsrhythmus einen verlässlichen Output der circadianen Uhr darstellt. Grundsätzlich wiesen die rh70-Mutanten das für Wildtyp-Fliegen typische bimodale Aktivitätsmuster auf, das sich durch zwei Aktivitätsmaxima auszeichnet, die entsprechend ihrer Lage als Morgen- beziehungsweise Abendaktivitätsgipfel bezeichnet werden. Dabei wurde beobachtet, dass sich rh70-Mutanten wie Wildtyp-Fliegen verhalten, die hohen Lichtintensitäten ausgesetzt sind. So zeigte deren Aktivitätsrhythmus unter allen Versuchsbedingungen eine verlängerte Mittagspause, die durch einen großen Abstand zwischen den beiden Aktivitätsmaxima hervorgerufen wurde. Durch diese Versuche wurde die Hypothese, dass Rh7 als eine Art Schirmpigment wirken könnte, auf Verhaltensebene bestätigt. Das Verhalten der cry01-Fliegen zeichnete sich im Wesentlichen durch eine unerwartet hohe Flexibilität der beiden Aktivitätsmaxima aus. Diese konnten auch unter extremen Photoperioden an die Übergänge von Licht und Dunkelheit gekoppelt werden. Der Aktivitätsrhythmus der entsprechenden rh70 cry01-Doppelmutanten wurde durch eine ausgeprägte Abendaktivität bestimmt und erlaubte es nicht, Rückschlüsse auf eine synergistische oder antagonistische Wirkung von Rh7 und CRY zu ziehen. Zukünftige Versuche könnten die verschiedenen circadianen Phänotypen auf molekularer Ebene charakterisieren, z. B. durch Untersuchung der Oszillationen der Uhrproteine in den verantwortlichen Schrittmacher-Neuronen. Zum einen konnten die Versuche dieser Arbeit bestätigen, dass Rh7 in der Tat über die klassische Phototransduktionskaskade als Photorezeptor wirken kann. Darüber hinaus wurden auf Ebene der circadianen Photorezeption weitere Anzeichen für eine alternative in vivo Funktion von Rh7 gesammelt. Diese sprechen für eine Rolle von Rh7 als Schirmpigment für Rh1, wodurch Rh7 an der einwandfreien Lichtadaptation beteiligt wäre. KW - Circadiane Rhythmik KW - Drosophila KW - Photorezeption KW - Circadian Rhythms Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72209 ER - TY - THES A1 - Luibl [née Hermann], Christiane T1 - The role of the neuropeptides NPF, sNPF, ITP and PDF in the circadian clock of Drosophila melanogaster T1 - Die Rolle der Neuropeptide NPF, sNPF, ITP und PDF in der circadianen Uhr von Drosophila melanogaster N2 - Organisms have evolved endogenous clocks which allow them to organize their behavior, metabolism and physiology according to the periodically changing environmental conditions on earth. Biological rhythms that are synchronized to daily changes in environment are governed by the so-called circadian clock. Since decades, chronobiologists have been investigating circadian clocks in various model organisms including the fruitfly Drosophila melanogaster, which was used in the present thesis. Anatomically, the circadian clock of the fruitfly consists of about 150 neurons in the lateral and dorsal protocerebrum, which are characterized by their position, morphology and neurochemistry. Some of these neurons had been previously shown to contain either one or several neuropeptides, which are thought to be the main signaling molecules used by the clock. The best investigated of these neuropeptides is the Pigment Dispersing Factor (PDF), which had been shown to constitute a synchronizing signal between clock neurons as well as an output factor of the clock. In collaboration with various coworkers, I investigated the roles of three other clock expressed neuropeptides for the generation of behavioral rhythms and the partly published, partly unpublished data are presented in this thesis. Thereby, I focused on the Neuropeptide F (NPF), short Neuropeptide F (sNPF) and the Ion Transport Peptide (ITP). We show that part of the neuropeptide composition within the clock network seems to be conserved among different Drosophila species. However, the PDF expression pattern in certain neurons varied in species deriving from lower latitudes compared to higher latitudes. Together with findings on the behavioral level provided by other people, these data suggest that different species may have altered certain properties of their clocks - like the neuropeptide expression in certain neurons - in order to adapt their behavior to different habitats. We then investigated locomotor rhythms in Drosophila melanogaster flies, in which neuropeptide circuits were genetically manipulated either by cell ablation or RNA interference (RNAi). We found that none of the investigated neuropeptides seems to be of equal importance for circadian locomotor rhythms as PDF. PDF had been previously shown to be necessary for rhythm maintenance in constant darkness (DD) as well as for the generation of morning (M) activity and for the right phasing of the evening (E) activity in entrained conditions. We now demonstrate that NPF and ITP seem to promote E activity in entrained conditions, but are clearly not the only factors doing so. In addition, ITP seems to reduce nighttime activity. Further, ITP and possibly also sNPF constitute weak period shortening components in DD, thereby opposing the effect of PDF. However, neither NPF or ITP, nor sNPF seem to be necessary in the clock neurons for maintaining rhythmicity in DD. It had been previously suggested that PDF is released rhythmically from the dorsal projection terminals. Now we discovered a rhythm in ITP immunostaining in the dorsal projection terminals of the ITP+ clock neurons in LD, suggesting a rhythm in peptide release also in the case of ITP. Rhythmic release of both ITP and PDF seems to be important to maintain rhythmic behavior in DD, since constantly high levels of PDF and ITP in the dorsal protocerebrum lead to behavioral arrhythmicity. Applying live-imaging techniques we further demonstrate that sNPF acts in an inhibitory way on few clock neurons, including some that are also activated by PDF, suggesting that it acts as signaling molecule within the clock network and has opposing effects to PDF. NPF did only evoke very little inhibitory responses in very few clock neurons, suggesting that it might rather be used as a clock output factor. We were not able to apply the same live-imaging approach for the investigation of the clock neuron responsiveness to ITP, but overexpression of ITP with various driver lines showed that the peptide most likely acts mainly in clock output pathways rather than inter-clock neuron communication. Taking together, I conclude that all investigated peptides contribute to the control of locomotor rhythms in the fruitfly Drosophila melanogaster. However, this control is in most aspects dominated by the actions of PDF and rather only fine-tuned or complemented by the other peptides. I assume that there is a high complexity in spatial and temporal action of the different neuropeptides in order to ensure correct signal processing within the clock network as well as clock output. N2 - Die meisten Organismen haben endogene Uhren entwickelt, mit deren Hilfe sie ihre Verhaltensweisen, ihren Metabolismus und auch ihre Physiologie an die periodisch wechselnden Umweltbedingungen auf unserer Erde anpassen können. Die sogenannten circadianen Uhren steuern dabei biologische Rhythmen, die an täglich wiederkehrende Umweltfaktoren angepasst sind. Schon seit Jahrzehnten wurden diese circadianen Uhren von Chronobiologen in verschiedensten Modellorganismen untersucht. Zu diesen gehört auch die Taufliege Drosophila melanogaster, welche im Rahmen dieser Doktorarbeit Verwendung fand. Anatomisch besteht die circadiane Uhr der Taufliege aus etwa 150 sogenannten Uhrneuronen, die sich im dorsalen und lateralen Protocerebrum der Fliege befinden. Diese können anhand ihrer Position im Gehirn, ihrer Morphologie als auch ihrer neurochemischen Eigenschaften charakterisiert werden. Es wurde bereits in früheren Arbeiten gezeigt, dass einige dieser Uhrneuronen jeweils ein oder mehrere Neuropeptide exprimieren, welche mit großer Wahrscheinlichkeit die wichtigsten Signalmoleküle der Uhr darstellen. Dabei ist der „Pigment Dispersing Factor“ (PDF) wohl das Neuropeptid, welches bisher in Bezug auf seine Funktion in der Uhr die größte Aufmerksamkeit fand. Es ist daher auch das Neuropeptid, das bei Weitem am besten untersucht ist. So wurde bereits gezeigt, dass PDF die Oszillationen der Uhrneuronen untereinander synchronisiert und auch in Ausgangssignalwegen der Uhr zu nachgeschalteten Gehirnregionen eine Rolle spielt. In Zusammenarbeit mit verschiedenen Kollegen, wurde im Rahmen dieser Doktorarbeit untersucht, welche Rolle drei andere Neuropeptide, welche in den Uhrneuronen exprimiert werden, in der Generierung von Verhaltensrhythmen spielen. Der Fokus lag dabei auf der Untersuchung des Neuropeptids F (NPF) des short Neuropeptids F (sNPF) und des Ion Transport Peptids (ITP). Wir konnten für manche dieser Peptide zeigen, dass ihre Verwendung im Uhrnetzwerk unterschiedlicher Drosophila-Arten konserviert zu sein scheint. Im Falle von PDF zeigten sich jedoch Unterschiede in der zellspezifischen Expression in Arten aus südlichen Breitengraden im Vergleich zu Arten aus nördlichen Breitengraden. Zusammen mit ergänzenden Verhaltensdaten anderer Arbeitsgruppen, gehen wir davon aus, dass unterschiedliche Arten bestimmte Eigenschaften ihrer Uhr – wie etwa die Neuropeptid-Expression in bestimmten Zellen – verändert haben, um ihr Verhalten bestmöglich an ihr jeweiliges Habitat anzupassen. Des Weiteren wurde in dieser Arbeit die Aktivitätsrhythmik in Fliegen untersucht, in welchen gezielt bestimmte Neuropeptid-Systeme auf genetischem Wege - entweder durch Zellablation oder RNA-Interferenz (RNAi) - manipuliert wurden. Wir konnten zeigen, dass wohl keines der untersuchten Peptide eine ähnlich große Rolle für die Aktivitätsrhythmik spielt wie PDF. Aus früheren Arbeiten geht hervor, dass PDF sowohl für die Aufrechterhaltung eines Rhythmus in konstanter Dunkelheit (DD), als auch für die Generierung der Morgenaktivität und für die richtige Phasenlage der Abendaktivität in Licht-Dunkel Zyklen (LD) essentiell ist. Ergebnisse der vorliegenden Arbeit zeigen nun, dass NPF und ITP die Abendaktivität in LD fördern, dass sie jedoch nicht die einzigen Faktoren sind, die dies bewerkstelligen. ITP scheint außerdem Aktivität während der Nacht zu hemmen. Des Weiteren stellen ITP und möglicherweise auch sNPF eine schwache Perioden verkürzende Komponente in DD dar, ganz im Gegensatz zu PDF, welches eine Perioden verlängernde Wirkung besitzt. Jedoch scheinen weder ITP, NPF noch sNPF für die generelle Aufrechterhaltung eines Rhythmus in DD nötig zu sein. Vorhergehende Arbeiten wiesen bereits darauf hin, dass PDF wahrscheinlich rhythmisch an den dorsalen Nervenendigungen ausgeschüttet wird. Unsere jetzigen Ergebnisse zeigen desweiteren eine Oszillation in der ITP-Immunfärbung in den dorsalen Projektionen der ITP+ Uhrneuronen in LD, was auch auf eine rhythmische Ausschüttung dieses Peptids schließen lässt. Die rhythmische Freisetzung beider Peptide scheint für die Aufrechterhaltung eines Verhaltensrhythmus in DD wichtig zu sein, da eine konstant hohe Menge an ITP und PDF im dorsalen Gehirn den Freilauf-Rhythmus störten. Die live-Imaging Experimente dieser Arbeit zeigten, dass sNPF auf manche Uhrneuronen inhibitorisch wirkt – auch auf einige, die durch PDF aktiviert werden können. sNPF könnte also als Signalmolekül innerhalb des Uhrnetzwerkes fungieren. Auch NPF führte zu inhibitorischen Zellantworten, jedoch waren diese äußerst schwach und betrafen nur wenige Uhrneuronen, was darauf schließen lässt, dass dieses Peptid wahrscheinlich am Signalausgang der Uhr beteiligt ist. Es war uns bisher nicht möglich dieselben live-Imaging Untersuchungen auch für ITP durchzuführen, jedoch zeigten Überexpressionsstudien mit verschiedenen Treiberlinien, dass auch ITP mit großer Wahrscheinlichkeit im Signalausgang der Uhr fungiert. Zusammenfassend lässt sich sagen, dass alle hier untersuchten Neuropeptide an der Kontrolle der rhythmischen Lokomotoraktivität von Drosophila melanogaster mitwirken. Dabei ist PDF eindeutig der dominierende Faktor, während die anderen Neuropeptide die Wirkung von PDF eher feinregulieren oder komplementieren. Aus den Daten kann geschlossen werden, dass die örtliche und zeitliche Funktionsweise dieser verschiedenen Peptide sehr komplex ist, um sowohl die Prozessierung von Signalen innerhalb des Uhrnetzwerkes als auch in den weitgehend noch unbekannten Ausgangswegen der Uhr zu gewährleisten. KW - Taufliege KW - Biologische Uhr KW - Neuropeptide KW - Innere Uhr KW - Drosophila KW - Circadian Rhythms Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93796 ER -