TY - THES A1 - Hoiß, Bernhard T1 - Effects of climate change, extreme events and management on plants, pollinators and mutualistic interaction networks T1 - Auswirkungen von Klimawandel, Extremereignissen und Management auf Pflanzen, Bestäuber und mutualistische Netzwerke N2 - I. Climate change comprises average temperatures rise, changes in the distribution of precipitation and an increased amount and intensity of extreme climatic events in the last decades. Considering these serious changes in the abiotic environment it seems obvious that ecosystems also change. Flora and fauna have to adapt to the fast changing conditions, migrate or go extinct. This might result in shifts in biodiversity, species composition, species interactions and in ecosystem functioning and services. Mountains play an important role in the research of these climate impacts. They are hotspots of biodiversity and can be used as powerful natural experiments as they provide, within short distances, the opportunity to research changes in the ecosystem induced by different climatic contexts. In this dissertation two approaches were pursued: i) surveys of biodiversity, trait dominance and assembly rules in communities depending on the climatic context and different management regimes were conducted (chapters II and III) and ii) the effects of experimental climate treatments on essential ecosystem features along the altitudinal gradient were assessed (chapters IV, V and VI). II. We studied the relative importance of management, an altitudinal climatic gradient and their interactions for plant species richness and the dominance of pollination types in 34 alpine grasslands. Species richness peaked at intermediate temperatures and was higher in grazed grasslands compared to non-managed grasslands. We found the climatic context and also management to influence the distribution and dominance structures of wind- and insect-pollinated plants. Our results indicate that extensive grazing maintains high plant diversity over the full subalpine gradient. Rising temperatures may cause an upward shift of the diversity peak of plants and may also result in changed species composition and adaptive potential of pollination types. III. On the same alpine grasslands we studied the impact of the climatic context along an altitudinal gradient on species richness and community assembly in bee communities. Species richness and abundance declined linearly with increasing altitude. Bee species were more closely related at high altitudes than at low altitudes. The proportion of social and ground-nesting species, as well as mean body size and altitudinal range of bees, increased with increasing altitude, whereas the mean geographic distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, while the relative importance of competition increases at low altitudes. We conclude that ongoing climate change poses a threat for alpine specialists with adaptations to cool environments but low competitive capacities. IV. We determined the impacts of short-term climate events on flower phenology and assessed whether those impacts differed between lower and higher altitudes. For that we simulated advanced and delayed snowmelt as well as drought events in a multi site experiment along an altitudinal gradient. Flower phenology was strongly affected by altitude, however, this effect declined through the season. The manipulative treatments caused only few changes in flowering phenology. The effects of advanced snowmelt were significantly greater at higher than at lower sites, but altitude did not influence the effect of the other treatments. The length of flowering duration was not significantly influenced by treatments. Our data indicate a rather low risk of drought events on flowering phenology in the Bavarian Alps. V. Changes in the structure of plant-pollinator networks were assessed along an altitudinal gradient combined with the experimental simulation of potential consequences of climate change: extreme drought events, advanced and delayed snowmelt. We found a trend of decreasing specialisation and therefore increasing complexity in networks with increasing altitude. After advanced snowmelt or drought networks were more specialised especially at higher altitudes compared to control plots. Our results show that changes in the network structures after climate manipulations depend on the climatic context and reveal an increasing susceptibility of plant-pollinator networks with increasing altitude. VI. The aim of this study was to determine the combined effects of extreme climatic events and altitude on leaf CN (carbon to nitrogen) ratios and herbivory rates in different plant guilds. We found no overall effect of climate manipulations (extreme drought events, advanced and delayed snowmelt) on leaf CN ratios and herbivory rates. However, plant guilds differed in CN ratios and herbivory rates and responded differently to altitude. CN ratios of forbs (legume and non-legume) decreased with altitude, whereas CN ratios of grasses increased with altitude. Further, CN ratios and herbivory rates increased during the growing season, indicating a decrease of food plant quality during the growing season. Insect herbivory rates were driven by food plant quality. Contrasting altitudinal responses of forbs versus grasses give reason to expect changed dominance structures among plant guilds with ongoing climate change. VII. This dissertation contributes to the understanding of factors that determine the composition and biotic interactions of communities in different climates. The results presented indicate that warmer climates will not only change species richness but also the assembly-rules for plant and bee communities depending on the species' functional traits. Our investigations provide insights in the resilience of different ecosystem features and processes towards climate change and how this resilience depends on the environmental context. It seems that mutualistic interactions are more susceptible to short-term climate events than flowering phenology and antagonistic interactions such as herbivory. However, to draw more general conclusions more empirical data is needed. N2 - I. Das Klima ändert sich: die Durchschnittstemperaturen steigen, die Niederschlagsverteilung ändert sich und sowohl die Anzahl als auch die Intensität von klimatischen Extremereignissen hat in den letzten Jahrzehnten zugenommen. In Anbetracht dieser beträchtlichen Veränderungen in der abiotischen Umwelt scheint es offensichtlich, dass sich auch die Ökosysteme verändern. Flora und Fauna müssen sich an die sich schnell verändernden Bedingungen anpassen, wandern oder sie sterben aus. Dies kann zu Veränderungen in der Biodiversität, der Artzusammensetzung, den Ökosystemfunktionen sowie von Ökosystemdienstleistungen führen. Gebirge spielen eine wichtige Rolle in der Erforschung dieser Klimafolgen. Sie sind Biodiversitäts-Hotspots und können als großräumige natürliche Experimente genutzt werden, da sie die Möglichkeit bieten, innerhalb kurzer Distanzen Veränderungen im Ökosystem unter verschiedenen klimatischen Bedingungen zu untersuchen. In dieser Dissertation wurden zwei Ansätze verfolgt: i) Es wurden Untersuchungen zur Abhängigkeit von Biodiversität, der Dominanz von funktionalen Merkmalen sowie den Gesetzmäßigkeiten in der Zusammensetzung von Artengemeinschaften vom klimatischen Kontext sowie verschiedenen Management Regimen durchgeführt. ii) Die Effekte von Klimaexperimenten auf essentielle Ökosystemeigenschaften, biotische Interaktionen und Nahrungsnetze entlang eines Höhengradienten wurden untersucht. II. Die relative Bedeutung von Höhenlage, Bewirtschaftungsform sowie ihre Interaktionen für den Artenreichtum von Pflanzen und die Dominanz von Bestäubungstypen wurden in 34 alpinen Wiesen untersucht. Der Artenreichtum erreichte bei mittleren Temperaturen ein Maximum und war auf beweideten Flächen höher als auf nicht bewirtschafteten Wiesen. Wir stellten außerdem fest, dass sowohl der klimatische Kontext als auch die Bewirtschaftungsform die Verteilung und Dominanzstrukturen von wind- und insektenbestäubten Pflanzen beeinflusste. Unsere Ergebnisse zeigen, dass extensive Beweidung eine hohe Artenvielfalt über den gesamten subalpinen Gradienten erhält. Steigende Temperaturen könnten eine Verschiebung des Bereiches mit maximaler Artenvielfalt nach oben sowie veränderte Zusammensetzungen von Artengemeinschaften und Veränderungen in der Bedeutung von Bestäubungstypen als Anpassung verursachen. III. Auf den selben alpinen Wiesen untersuchten wir den Einfluss der klimatischen Gegebenheiten entlang des Höhengradienten auf die Artenzahl und die Gesetzmäßigkeiten in der Zusammensetzung von Wildbienen Artengemeinschaften. Die Artenzahl und Abundanz nahm mit zunehmender Höhe linear ab. Die Bienenarten in höheren Lagen waren näher miteinander verwandt als in niedrigen Lagen. Der Anteil sozialer, im Boden nistender Arten sowie die mittlere Körpergröße und Höhenverbreitung der Bienen nahm mit zunehmender Höhe zu, wohingegen die mittlere geographische Verbreitung der Arten abnahm. Unsere Ergebnisse legen nahe, dass die Zusammensetzung von Artengemeinschaften in höheren Lagen primär vom Filtereffekt der Umwelt bestimmt wird, wohingegen der Einfluss von Konkurrenz in niedrigen Lagen an Bedeutung gewinnt. Wir folgern, dass der fortschreitende Klimawandel eine Gefährdung für alpine Spezialisten darstellt, die zwar Anpassungen an kühle Bedingungen aber oft eine nur geringe Konkurrenzfähigkeit aufweisen. IV. Wir untersuchten die Auswirkung von kurzzeitigen klimatischen Ereignissen auf die Blütenphänologie und analysierten, ob sich diese Auswirkungen zwischen hohen und tiefen Lagen unterscheiden. Dazu simulierten wir verfrühte und verspätete Schneeschmelze sowie Dürreereignisse in Experimenten auf multiplen Standorten entlang eines Höhengradienten. Die Blütenphänologie wurde von der Höhenlage stark beeinflusst, dieser Effekt nahm im Laufe der Saison allerdings ab. Die Manipulationen zeitigten nur wenige Effekte auf die Blühphänologie. Die Auswirkungen von verfrühter Schneeschmelze waren auf hohen Flächen signifikant höher als in niedrigen Lagen, es wurden jedoch keine Unterschiede für die anderen Behandlungen zwischen den Höhenstufen gefunden. Die Blühdauer wurde durch die Behandlungen nicht beeinflusst. Unsere Daten zeigen ein relativ geringes Risiko für die Blütenphänologie durch Dürreereignisse in den bayerischen Alpen auf. V. Veränderungen in der Struktur von Pflanzen-Bestäuber Netzwerken wurden entlang eines Höhengradienten in Kombination mit der experimentellen Simulation von potentiellen Konsequenzen des Klimawandels (extreme Dürre, verfrühte und verspätete Schneeschmelze) untersucht. Wir fanden einen Trend hin zu einem abnehmenden Spezialisierungsgrad und daher einer Zunahme der Komplexität in Netzwerken mit zunehmender Höhe. Die Netzwerke nach verfrühter Schneeschmelze und nach Dürre waren, insbesondere in höheren Lagen, stärker spezialisiert als in den Kontrollflächen. Unsere Ergebnisse zeigen, dass Veränderungen in den Netzwerkstrukturen nach Klimamanipulationen vom klimatischen Zusammenhang abhängen und zeigen auf, dass die Anfälligkeit von Pflanzen-Bestäuber Netzwerken mit der Höhe zunimmt. VI. Das Ziel dieser Studie war es die kombinierten Auswirkungen von kurzzeitigen klimatischen Ereignissen und Meereshöhe auf das CN (Kohlenstoff zu Stickstoff) Verhältnis in Blättern und den Blattfraß in verschiedenen Pflanzengruppen zu untersuchen. Wir fanden keinen Gesamteffekt der Klimamanipulationen (extremes Dürreereignis, verfrühte und verspätete Schneeschmelze) auf das CN Verhältnis und die Herbivorieraten. Die Pflanzengruppen unterschieden sich jedoch in ihrer Reaktion auf die Meereshöhe hinsichtlich ihres CN Verhältnisses und des Blattfraßes. Das CN Verhältnis in Gräsern nahm mit der Höhe zu, wohingegen das CN Verhältnis in den restlichen krautigen Pflanzen mit zunehmender Höhe abnahm. Außerdem nahmen CN Verhältnis und die Herbivorierate im Laufe der Saison zu, was auf eine Abnahme der Futterqualität im Saisonverlauf hindeutet. Die Herbivorieraten wurden von der Futterqualität der Pflanzen bestimmt. Die gegensätzlichen Muster von Gräsern und anderen krautigen Pflanzen über die Höhe lassen veränderte Dominanzstrukturen zwischen Pflanzengruppen mit fortschreitendem Klimawandel zu erwarten. VII. Diese Dissertation leistet einen Beitrag zur Identifikation von Gesetzmäßigkeiten in der Zusammensetzung von Artengemeinschaften unter unterschiedlichen klimatischen Bedingungen. Die präsentierten Ergebnisse weisen darauf hin, dass ein wärmeres Klima nicht nur den Artenreichtum, sondern auch diese Gesetzmäßigkeiten für Pflanzen- und Bienenvergesellschaftungen in Abhängigkeit von den funktionellen Merkmalen der Arten verändern wird. Unsere Untersuchungen liefern Erkenntnisse über die Stabilität verschiedener Ökosystemaspekte und -prozesse gegenüber dem Klimawandel und wie diese Stabilität vom Umweltkontext abhängt. Es scheint, dass mutualistische Interaktionen anfälliger sind für kurzfristige Klimaereignisse als die Phänologie von Blüten oder antagonistische Interaktionen wie die Herbivorie. Um allgemeinere Rückschlüsse ziehen zu können bedarf es jedoch dringend weiterer empirischer Daten. KW - Klimaänderung KW - Alpen KW - Biodiversität KW - Bestäubungsökologie KW - Mutualismus KW - climate change KW - land use KW - altitudinal gradient KW - elevation KW - life history traits KW - bees KW - vascular plants KW - alpine ecosystems KW - environmental filtering KW - Klimawandel KW - Extremereignisse KW - Management KW - Gefäßpflanzen KW - mutualistische Netzwerke KW - Pflanzen-Bestäuber-Interaktionen KW - Höhengradient Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87919 ER - TY - THES A1 - Leingärtner, Annette T1 - Combined effects of climate change and extreme events on plants, arthropods and their interactions T1 - Kombinierte Effekte von Klimawandel und Extremereignissen auf Pflanzen, Arthropoden und ihre Interaktionen N2 - I. Global climate change directly and indirectly influences biotic and abiotic components of ecosystems. Changes in abiotic ecosystem components caused by climate change comprise temperature increases, precipitation changes and more frequently occurring extreme events. Mediated by these abiotic changes, biotic ecosystem components including all living organisms will also change. Expected changes of plants and animals are advanced phenologies and range shifts towards higher latitudes and altitudes which presumably induce changes in species interactions and composition. Altitudinal gradients provide an optimal opportunity for climate change studies, because they serve as natural experiments due to fast changing climatic conditions within short distances. In this dissertation two different approaches were conducted to reveal species and community responses to climate change. First, species richness and community trait analyses along an altitudinal gradient in the Bavarian Alps (chapters II, III) and second, climate change manipulation experiments under different climatic contexts (chapters IV, V, IV). II. We performed biodiversity surveys of butterfly and diurnal moth species on 34 grassland sites along an altitudinal gradient in the National Park Berchtesgaden. Additionally, we analysed the dominance structure of life-history traits in butterfly assemblages along altitude. Species richness of butterflies and diurnal moths decreased with increasing altitude. The dominance of certain life-history-traits changed along the altitudinal gradient with a higher proportion of larger-winged species and species with higher egg numbers towards higher altitudes. However, the mean egg maturation time, population density and geographic distribution within butterfly assemblages decreased with increasing altitude. Our results indicate that butterfly assemblages were mainly shaped by environmental filtering. We conclude that butterfly assemblages at higher altitudes will presumably lack adaptive capacity to future climatic conditions, because of specific trait combinations. III. In addition to butterfly and diurnal moth species richness we also studied plant species richness in combination with pollination type analyses along the altitudinal gradient. The management type of the alpine grasslands was also integrated in the analyses to detect combined effects of climate and management on plant diversity and pollination type. Plant species richness was highest at intermediate altitudes, whereby the management type influenced the plant diversity with more plant species at grazed compared to mown or non-managed grasslands. The pollination type was affected by both the changing climate along the gradient and the management type. These results suggest that extensive grazing can maintain high plant diversity along the whole altitudinal gradient. With ongoing climate change the diversity peak of plants may shift upwards, which can cause a decrease in biodiversity due to reduced grassland area but also changes in species composition and adaptive potential of pollination types. IV. We set up manipulation experiments on 15 grassland sites along the altitudinal gradient in order to determine the combined effects of extreme climatic events (extreme drought, advanced and delayed snowmelt) and elevation on the nutritional quality and herbivory rates of alpine plants. The leaf CN (carbon to nitrogen) ratio and the plant damage through herbivores were not significantly affected by the simulated extreme events. However, elevation influenced the CN ratios and herbivory rates of alpine plants with contrasting responses between plant guilds. Furthermore, we found differences in nitrogen concentrations and herbivory rates between grasses, legumes and forbs, whereas legumes had the highest nitrogen concentrations and were damaged most. Additionally, CN ratios and herbivory rates increased during the growing season, indicating a decrease of food plant quality during the growing season. Contrasting altitudinal responses of grasses, legumes and forbs presumably can change the dominance structure among these plant guilds with ongoing climate change. V. In this study we analysed the phenological responses of grassland species to an extreme drought event, advanced and delayed snowmelt along the altitudinal gradient. Advanced snowmelt caused an advanced beginning of flowering, whereas this effect was more pronounced at higher than at lower altitudes. Extreme drought and delayed snowmelt had rather low effects on the flower phenology and the responses did not differ between higher and lower sites. The strongest effect influencing flower phenology was altitude, with a declining effect through the season. The length of flowering duration was not significantly influenced by treatments. Our data suggest that plant species at higher altitudes may be more affected by changes in snowmelt timing in contrast to lowland species, as at higher altitudes more severe changes are expected. However, the risk of extreme drought events on flowering phenology seems to be low. VI. We established soil-emergence traps on the advanced snowmelt and control treatment plots in order to detect possible changes in abundances and emergence phenologies of five arthropod orders due to elevation and treatment. Additionally, we analysed the responses of Coleoptera species richness to elevation and treatment. We found that the abundance and species richness of Coleoptera increased with elevation as well as the abundance of Diptera. However, the abundance of Hemiptera decreased with elevation and the abundances of Araneae and Hymenoptera showed no elevational patterns. The advanced snowmelt treatment increased the abundances of Araneae and Hymenoptera. The emergence of soil-hibernating arthropods was delayed up to seven weeks at higher elevations, whereas advanced snowmelt did not influence the emergence phenology of arthropods immediately after snowmelt. With climate change earlier snowmelt will occur more often, which especially will affect soil-hibernating arthropods in alpine regions and may cause desynchronisations between species interactions. VII. In conclusion, we showed that alpine ecosystems are sensitive towards changing climate conditions and extreme events and that many alpine species in the Bavarian Alps are endangered. Many alpine species could exist under warmer climatic conditions, however they are expected to be outcompeted by more competitive lowland species. Furthermore, host-parasite or predator-prey interactions can be disrupted due to different responses of certain guilds to climate change. Understanding and predicting the complex dynamics and potential risks of future climate change remains a great challenge and therefore further studies analysing species and community responses to climate change are needed. N2 - I. Der globale Klimawandel beeinflusst direkt und indirekt biotische und abiotische Komponenten der Ökosysteme. Durch Klimawandel verursachte Veränderungen in den abiotischen Komponenten der Ökosysteme umfassen Temperaturanstiege, Veränderungen im Niederschlag und häufiger auftretende Extremereignisse. Als Folge dieser abiotischen Veränderungen, werden sich auch die biotischen Komponenten der Ökosysteme, die alle lebenden Organismen einschließen, verändern. Voraussichtliche Veränderungen bei Pflanzen und Tieren sind vorverlegte Phänologien und Verbreitungsverschiebungen in Richtung höherer Breitengrade und Höhenlagen, was möglicherweise Veränderungen von Interaktionen zwischen Arten und in der Artzusammensetzung verursacht. Höhengradienten bieten durch sich schnell verändernde klimatische Bedingungen innerhalb kurzer Distanzen eine optimale Möglichkeit für Klimawandelstudien im Freiland. In dieser Dissertation wurden zwei unterschiedliche Versuchsansätze genutzt, um die Reaktionen von Arten und Artengemeinschaften auf den Klimawandel zu untersuchen: erstens Analysen zum Artenreichtum und zu Merkmalen innerhalb von Artengemeinschaften entlang eines Höhengradienten in den Bayerischen Alpen (Kapitel II, III) und zweitens Manipulationsexperimente zur Simulation von Klimawandel bei unterschiedlichen klimatischen Bedingungen (Kapitel IV, V, VI). II. Wir haben Biodiversitätsaufnahmen von Schmetterlings- und tagaktiven Nachtfalterarten entlang eines Höhengradienten im Nationalpark Berchtesgaden durchgeführt. Zusätzlich haben wir die Dominanzstruktur von Life-History-Merkmalen in Schmetterlingsgesellschaften entlang des Höhengradienten analysiert. Der Artenreichtum von Schmetterlingen und tagaktiven Nachtfaltern nahm mit zunehmender Höhe ab. Die Dominanz von bestimmten Life-History-Merkmalen veränderte sich entlang des Höhengradienten. Zum Beispiel fanden wir einen höheren Anteil an Arten mit größeren Flügeln und eine größere Anzahl an Eiern in höheren Lagen. Die mittlere Eireifezeit, Populationsdichte und geographische Verbreitung von Schmetterlingsgesellschaften nahm mit steigender Höhe ab. Unsere Ergebnisse deuten darauf hin, dass Schmetterlingsgesellschaften hauptsächlich durch den Filtereffekt der Umwelt geformt werden. Wir schlussfolgern, dass sich bestimmte Merkmalskombinationen von Schmetterlingsgesellschaften in höheren Lagen möglicherweise ungünstig auf die Anpassungskapazität an zukünftige klimatische Veränderungen auswirken. III. Zusätzlich zum Artenreichtum von Schmetterlingen und tagaktiven Nachtfaltern haben wir auch den Artenreichtum von Pflanzen in Kombination mit Analysen zu Bestäubungstypen entlang des Höhengradienten untersucht. Die Bewirtschaftungsform der alpinen Grasländer wurde in die Analysen integriert, um kombinierte Auswirkungen von Klima und Bewirtschaftungsform auf die Pflanzendiversität und den Bestäubungstyp zu erfassen. Der Artenreichtum von Pflanzen war auf mittleren Höhen am größten, wobei die Bewirtschaftungsform die Pflanzendiversität beeinflusste. Es kamen mehr Pflanzenarten auf beweideten im Vergleich zu gemähten oder nicht bewirtschafteten Wiesen vor. Der Bestäubungstyp wurde sowohl durch das sich verändernde Klima entlang des Gradienten als auch durch die Bewirtschaftungsform beeinflusst. Unsere Ergebnisse lassen vermuten, dass extensive Beweidung eine hohe Pflanzendiversität entlang des gesamten Höhengradienten erhalten kann. Mit fortschreitendem Klimawandel könnte sich der Bereich mit höchster Pflanzendiversität nach oben verschieben, was zu einem Biodiversitätsverlust durch eine Abnahme an Grasflächen führen könnte, aber auch zu Veränderungen in der Artenzusammensetzung und dem Anpassungspotential von Bestäubungstypen. IV. Wir simulierten Extremereignisse (extreme Dürre, frühere und spätere Schneeschmelze) auf 15 Grasflächen entlang des Höhengradienten, um kombinierte Effekte von extremen klimatischen Ereignissen und Höhenlage auf die Futterqualität und den Blattfraß von alpinen Pflanzen zu untersuchen. Das Verhältnis von Kohlenstoff zu Stickstoff (CN) in Blättern und die Fraßschäden durch Pflanzenfresser wurden durch die simulierten Extremereignisse nicht signifikant beeinflusst. Dagegen beeinflusste die Höhenlage das CN-Verhältnis und die Herbivorieraten von alpinen Pflanzen mit entgegengesetzten Reaktionen unter den Pflanzengruppen. Des Weiteren haben wir Unterschiede in den Stickstoffkonzentrationen und Herbivorieraten zwischen Gräsern, Leguminosen und krautigen Pflanzen gefunden, wobei die Leguminosen die höchsten Stickstoffkonzentrationen aufwiesen und am stärksten angefressen waren. Zusätzlich stiegen die CN-Verhältnisse und die Fraßschäden während der Vegetationsperiode an, was auf eine Abnahme der Futterqualität im Verlauf der Vegetationsperiode hindeutet. Entgegengesetzte Muster von Gräsern, Leguminosen und krautigen Pflanzen über die Höhe können möglicherweise die Dominanzstruktur zwischen diesen Pflanzengruppen mit fortschreitendem Klimawandel verändern. V. In dieser Studie haben wir die phänologischen Reaktionen von Graslandarten auf ein extremes Dürreereignis, eine frühere und eine spätere Schneeschmelze entlang des Höhengradienten, analysiert. Die frühere Schneeschmelze bewirkte einen früheren Blühbeginn, wobei dieser Effekt auf höheren Lagen ausgeprägter war als auf tieferen Lagen. Extreme Dürre und spätere Schneeschmelze hatten eher geringe Auswirkungen auf die Blühphänologie und die Auswirkungen unterschieden sich nicht zwischen höher und tiefer gelegenen Flächen. Am stärksten würde die Blühphänologie von der Höhenlage beeinflusst wobei sich der Effekt im Verlauf der Vegetationsperiode verringerte. Die Länge der Blühdauer wurde durch die Simulationen nicht signifikant beeinflusst. Unsere Ergebnisse deuten darauf hin, dass Pflanzenarten in höheren Lagen stärker durch Veränderungen des Zeitpunktes der Schneeschmelze beeinflusst werden als Tieflandarten, weil in höheren Lagen stärkere Veränderungen erwartet werden. Das Risiko von extremer Dürre für die Blühphänologie scheint aber gering zu sein. VI. Wir untersuchten Effekte der Höhenlage und früherer Schneeschmelze auf Häufigkeiten und Schlupfphänologien fünf verschiedener Arthropodenordnungen. Dazu installierten wir Bodenphotoeklektoren auf Flächen mit früherer Schneeschmelze und Kontrollflächen. Außerdem analysierten wir die Auswirkungen der Höhenlage und der früheren Schneeschmelze auf den Artenreichtum von Coleoptera. Wir stellten fest, dass die Abundanz und der Artenreichtum von Coleoptera sowie die Abundanz der Diptera mit steigender Höhenlage zunahmen, während die Abundanz der Hemiptera mit steigender Höhe abnahm. Araneae und Hymenoptera zeigten keine Abundanzmuster entlang des Höhengradienten. Eine simulierte frühere Schneeschmelze ließ die Abundanz der Araneae und Hymenoptera ansteigen. Arthropoden, die im Boden überwinterten, schlüpften in höheren Lagen bis zu sieben Wochen später. Eine frühere Schneeschmelze beeinflusste die Schlupfphänologie der Arthropoden unmittelbar nach der Schneeschmelze jedoch nicht. Aufgrund des Klimawandels wird eine frühere Schneeschmelze häufiger auftreten, was vor allem Auswirkungen auf bodenüberwinternde Arthropoden in der Alpenregion haben kann und zu Desynchronisationen mit interagierenden Arten führen kann. VII. Abschließend lässt sich sagen, dass alpine Ökosysteme sensibel auf klimatische Veränderungen und Extremereignisse reagieren und dass viele alpine Arten in den Bayerischen Alpen gefährdet sind. Viele alpine Arten könnten unter wärmeren klimatischen Bedingungen existieren, aber vermutlich werden sie von konkurrenzstärkeren Tieflandarten verdrängt. Des Weiteren können Wirt-Parasit oder Räuber-Beute Interaktionen durch unterschiedliche Reaktionen von bestimmten Gruppen auf Klimawandel gestört werden. Es bleibt eine große Herausforderung die komplexen Dynamiken und möglichen Gefahren des zukünftigen Klimawandels zu verstehen und vorherzusagen. Wir empfehlen weitere Studien, die die Auswirkungen des Klimawandels auf Arten und Artengesellschaften untersuchen. KW - Insekten KW - Klimaänderung KW - Pflanzen KW - Höhenstufe KW - climate change KW - insects KW - altitudinal gradient KW - extreme events KW - Klimawandel KW - Insekten KW - Höhengradient KW - Extremereignisse Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87758 ER - TY - THES A1 - Claßen, Alice T1 - Diversity, traits and ecosystem services of pollinators along climate and land use gradients on Mount Kilimanjaro T1 - Diversität, Merkmale und Ökosystemfunktionen von Bestäubern entlang von Klima- und Landnutzungsgradienten am Kilimandscharo N2 - Since more than two centuries naturalists are fascinated by the profound changes in biodiversity observed along climatic gradients. Although the theories explaining changes in the diversity and the shape of organisms along climatic gradients belong to the foundations of modern ecology, our picture on the spatial patterns and drivers of biodiversity is far from being complete. Ambiguities in theory and data are common and past work has been strongly concentrated on plants and vertebrates. In the last two decades, interest in the fundamental processes structuring diversity along climatic gradients gained new impetus as they are expected to improve our understanding about how ecosystems will respond to global environmental changes. Global temperatures are rising faster than ever before; natural habitats are transformed into agricultural land and existing land use systems get more and more intensified to meet the demands of growing human populations. The fundamental shifts in the abiotic and biotic environment are proclaimed to affect ecosystems all over the world; however, precise predictions about how ecosystems respond to global changes are still lacking. We investigated diversity, traits and ecosystem services of wild bees along climate and land use gradients on Mount Kilimanjaro (Tanzania, East Africa). Wild bees play a major role in ecosystems, as they contribute to the reproduction and performance of wild and crop plants. Their responsiveness to environmental changes is therefore of high ecological and economic importance. Temperature and energy resources have often been suggested to be the main determinants of global and local species richness, but the mechanisms behind remain poorly understood. In the study described in chapter II we analyzed species richness patterns of wild bees along climate and land use gradients on Mount Kilimanjaro and disentangled the factors explaining most of the changes in bee richness. We found that floral resources had a weak but significant effect on pollinator abundance, which in turn was positively related to species richness. However, temperature was the strongest predictor of species richness, affecting species richness both directly and indirectly by positively influencing bee abundances. We observed higher levels of bee-flower-interactions at higher temperatures, independently of flower and bee abundances. This suggests that temperature restricts species richness by constraining the exploitation of resources by ectotherms. Current land use did not negatively affect species richness. We conclude that the richness of bees is explained by both temperature and resource availability, whereas temperature plays the dominant role as it limits the access of ectotherms to floral resources and may accelerate ecological and evolutionary processes that drive the maintenance and origination of diversity. Not only species numbers, but also morphological traits like body size are expected to be shaped by both physiological and energetic constraints along elevational gradients. Paradoxically, Bergmann´s rule predicts increases of body sizes in cooler climates resulting from physiological constraints, while species-energy theory suggests declines in the mean body size of species caused by increased extinction probabilities for large-bodied species in low-energy habitats. In chapter III we confronted this ambiguity with field data by studying community-wide body size variation of wild bees on Mt. Kilimanjaro. We found that along a 3680 m elevational gradient bee individuals became on average larger within species, while large species were increasingly absent from high-elevational communities. This demonstrates, on the one hand, how well-established, but apparently contrasting ecological theories can be merged through the parallel consideration of different levels of biological organization. On the other hand it signals that the extinction risk in the course of environmental change is not equally distributed among species within a community. Land use intensification is known to threaten biodiversity, but the consequences for ecosystem services are still a matter of debate. In chapter IV, we experimentally tested the single and combined contributions of pest predators and pollinators to coffee production along a land use intensification gradient on Mount Kilimanjaro. We found that pest predation increased fruit set by on average 9%, while pollination increased fruit weight of coffee by on average 7.4%. Land use had no significant effect on both ecosystem services. However, we found that in coffee plantations with most intensified land use, pollination services were virtually exclusively provided by the honey bee (Apis mellifera). The reliance on a single pollinator species is risky, as possible declines of that species may directly lower pollination services, resulting in yield losses. In contrast, pollination services in structurally complex homegardens were found to be provided by a diverse pollinator community, increasing the stability of pollination services in a long term. We showed that on Mount Kilimanjaro pollinator communities changed along elevational gradients in terms of species richness (chapter II) and trait composition (chapter III). Temperature and the temperature-mediated accessibility of resources were identified as important predictors of these patterns, which contributes to our fundamental understanding about the factors that shape ectothermic insect communities along climatic gradients. The strong temperature-dependence of pollinators suggests that temperature shifts in the course of global change are likely to affect pollinator communities. Pollinators might either profit from rising temperatures, or shift to higher elevations, which could result in related biotic attrition in the lowland with consequences for the provision of ecosystem services in cropping systems. Up to now, land use intensification had no significant impact on the diversity of pollinator communities and their ecosystem services. Pollinators might profit from the strong landscape heterogeneity in the region and from the amount of flower resources in the understory of cropping systems. However,progressing homogenization of the landscape and the pronounced application of pesticides could result in reduced diversity and dominance of single species, as we already found in sun coffee plantations. Such shifts in community compositions could threaten the stability of ecosystem services within cropping and natural systems in a long term. N2 - Die Biodiversität auf der Erde ist nicht gleichmäßig verteilt, sondern verändert sich entlang klimatischer Gradienten – ein Phänomen, das Naturwissenschaftler schon seit mehr als zwei Jahrhunderten fasziniert. Über die Mechanismen, welche die Verteilung von Arten entlang von Klimazonen bestimmen, besteht nach wie vor keine Einigkeit, auch wenn viele der hier hervorgebrachten Theorien zu den Grundlagen der modernen Ökologie gehören. Ambivalenzen in den Erklärungsmodellen und erhobenen Daten sind häufig und bisherige Studien konzentrierten sich vorrangig auf Pflanzen und Vertebraten, während andere Taxa weniger Beachtung fanden. Die Unsicherheit über die Auswirkungen des globalen Wandels auf Ökosysteme und die Konsequenzen für Ökosystemdienstleistungen setzte neue Impulse im Bereich der Biodiversitätsforschung. Temperaturen steigen so schnell wie nie zuvor; natürliche Habitate werden zunehmend in Agrarflächen umgewandelt und bestehende Landwirtschaftssysteme werden intensiviert. Präzise Vorhersagen darüber, wie Ökosysteme auf solch drastische Umweltveränderungen reagieren, fehlen jedoch weitgehend. In dieser Dissertation wird gezeigt, wie sich die Artenvielfalt, morphologische Merkmale und Ökosystemfunktionen von Bienen entlang von Klima- und Landnutzungsgradienten des Kilimandscharos (Tansania, Ostafrika) verändern. Bienen spielen eine wichtige Rolle in Ökosystemen, da sie als Bestäuber zur Reproduktion und Produktivität von Wild- und Nutzpflanzen beitragen. Die Veränderung ihres Artenreichtums, ihrer Merkmale und ihrer Ökosystemdienstleistungen entlang von Umweltgradienten ist somit von großer ökologischer und ökonomischer Relevanz. Temperatur und die Verfügbarkeit von Ressourcen sind die Faktoren, mit denen globale und lokale Muster von Diversität am häufigsten erklärt werden. Die kausalen Zusammenhänge über welche die Temperatur und die Verfügbarkeit von Ressourcen eine Erhöhung der Artenvielfalt bewirken, sind jedoch nach wie vor unklar. Im zweiten Kapitel dieser Arbeit wurde untersucht, wie sich der Artenreichtum von Bienen entlang von Klima- und Landnutzungsgradienten des Kilimandscharos verändert und welche Faktoren für diese Veränderungen verantwortlich sind. Blühressourcen hatten einen schwachen, aber signifikanten Einfluss auf die Bestäuberabundanzen, welche wiederum einen Großteil des Artenreichtums erklärten. Insgesamt hatte die Temperatur jedoch einen deutlich stärken Einfluss auf die Artenvielfalt als die Verfügbarkeit von Blühressourcen: Die Temperatur wirkte sich direkt, möglicherweise über einen Erhöhung von Speziationsraten, und indirekt, über eine Erhöhung der Bienenabundanz, auf die Artenvielfalt von Bienen aus. Zusätzlich konnte beobachtet werden, dass die Blütenbesuche von Bienen unabhängig von der Blütendichte und der Bienenabundanz, mit einem Anstieg der Temperatur zunahmen. Aus diesen Beobachtungen folgern wir, dass bei Ektothermen die Nutzbarkeit von Ressourcen durch die Temperatur gesteuert sein könnte. Die Untersuchung morphologischer Merkmale entlang von Umweltgradienten erlaubt es, deterministische von stochastischen Prozessen bei der Zusammensetzung von Artengemeinschaften zu unterscheiden. Während bei stochastischen Prozessen Merkmale entlang von Umweltgradienten zufällig aus Artengemeinschaften ausscheiden sollten, wird im Falle deterministischer Prozesse ein gerichtetes Muster erwartet. Unter den deterministischen Prozessen konkurrieren bezüglich der Körpergröße zwei scheinbar konträre Theorien: Während die Bergmannsche Regel vorhersagt, dass große Tiere, aufgrund eines verbesserten Oberflächen-Volumen-Verhältnisses, einen Vorteil in kühlen Regionen haben, weist die Arten-Energie-Theorie größeren Arten eine erhöhte Aussterbewahrscheinlichkeit in energielimitierten, kühlen Gebieten zu, so dass die mittlere Körpergröße von Lebensgemeinschaften bei kälterer Temperatur sinken sollte. Im dritten Kapitel dieser Dissertation untersuchten wir, ob sich morphologische Merkmale von Wildbienen mit zunehmender Höhe verändern. Dabei betrachteten wir nicht nur Merkmalsveränderungen innerhalb von Artengemeinschaften, sondern auch innerartliche Veränderungen. Sowohl physiologische als auch energetische Restriktionen prägten die Merkmalskompositionen, allerdings auf unterschiedlichen biologischen Ebenen. So nahm die Körpergröße innerhalb von Arten mit der Höhe im Durchschnitt zu (=Bergmannsche Regel), während auf Gemeinschaftsebene kleinere Arten die Hochgebirgsregionen dominierten (=energetische Restriktion). Die parallele Betrachtung der intra- und interspezifischen Ebene ermöglichte es uns, scheinbar konträre ökologische Theorien zusammenzuführen. Zudem konnten wir zeigen, dass Merkmale nicht zufällig, sondern gerichtet aus Artengemeinschaften gefiltert werden. Landnutzungsintensivierung bedroht Biodiversität, aber die Konsequenzen für Ökosystemdienstleistungen sind nach wie vor ungewiss. Im vierten Kapitel dieser Arbeit prüften wir mit Hilfe von einzelnen und kombinierten Bestäuber- und Prädatorausschlussexperimenten, welchen Beitrag Bestäuber, Vögel und Fledermäuse in verschiedenen Anbausystemen zur Kaffeeproduktion am Kilimandscharo leisten. Wir zeigten, dass sich Bestäuber und Prädatoren in ihren Effekten ergänzten: Während Bestäuber eine Steigerung des Kaffeebohnengewichtes um durchschnittlich 7.4% bewirkten, konnte durch die Prädation von Schädlingen der Fruchtansatz des Kaffees um durchschnittlich 9% gesteigert werden. Landwirtschaftliche Intensivierung, von komplexen Waldwirtschaftssystemen, über beschattete Kaffeeplantagen, bis hin zu Sonnenplantagen hatte keinen negativen Effekt auf die Ökosystemdienstleistungen von Bestäubern und Prädatoren. Wir konnten jedoch nachweisen, dass in Waldwirtschaftssystemen eine diverse Bestäubergemeinschaft den Kaffee bestäubt, während in Sonnenplantagen fast ausschließlich die Honigbiene als Bestäuber fungiert. Eine solche Verschiebung der Bestäuber-komposition könnte die langfristige Stabilität intensiv genutzter Flächen gefährden. In dieser Dissertation zeigten wir, wie sich Bestäubergemeinschaften am Kilimandscharo entlang von Höhengradienten bezüglich ihrer Artenvielfalt (Kapitel II) und ihrer Merkmale (Kapitel III) verändern. Temperatur und temperatur-gesteuerte Ressourcennutzbarkeit wurden als maßgebende Determinanten dieser Muster identifiziert. Damit wurde ein Beitrag zur Identifikation von Gesetzmäßigkeiten in der Verteilung ektothermer Insekten entlang von Klimagradienten geleistet. Unsere Ergebnisse weisen darauf hin, dass Klimaveränderungen im Zuge des globalen Wandels Konsequenzen für Bestäubergemeinschaften haben könnten. Eventuell könnten Bestäuber von den steigenden Temperaturen profitieren. Gleichsam könnte es aber auch zu einer Verschiebung von Bestäubern in höher gelegene Regionen und zu einem daran gekoppelten Einbruch der Bestäubungsleistungen in tiefliegenden Kulturlandschaften kommen. Im Hinblick auf die Konsequenzen anthropogener Landnutzung wurde festgestellt, dass die landwirtschaftliche Intensivierung am Kilimandscharo bisher keinen messbaren negativen Effekt auf die Ökosystemdienstleitungen von Bestäubern hatte. Die Bestäuber profitieren vermutlich von der starken Landschaftsheterogenität der Region und zahlreichen krautigen Blühressourcen im Unterwuchs von Agrarflächen. Eine zunehmende Homogenisierung der Landschaft und ein verstärkter Einsatz von Pestiziden könnten jedoch, wie auf Sonnenplantagen bereits zu finden, zu einer Dominanz von einigen wenigen Arten führen, welches zusammen mit der klimabedingten Artenverschiebung die langfristige Stabilität von Agrarsystemen und natürlichen Systemen gefährden könnte. KW - Kilimandscharo KW - Bestäuber KW - Biodiversität KW - Höhengradient KW - Landnutzungsgradient KW - Arten-Energy-Theory KW - species-energy-theory KW - elevational gradient KW - Kilimanjaro KW - pollinators KW - diversity KW - ecosystem service KW - ecology Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-101292 ER - TY - THES A1 - Gebert, Friederike T1 - Mammals and dung beetles along elevational and land use gradients on Mount Kilimanjaro: diversity, traits and ecosystem services T1 - Säugetiere und Dungkäfer entlang von Höhen- und Landnutzungsgradienten am Kilimandscharo: Diversität, funktionelle Merkmale und Ökosystemdienstleistungen N2 - Despite belonging to the best described patterns in ecology, the mechanisms driving biodiversity along broad-scale climatic gradients, like the latitudinal gradient in diversity, remain poorly understood. Because of their high biodiversity, restricted spatial ranges, the continuous change in abiotic factors with altitude and their worldwide occurrence, mountains constitute ideal study systems to elucidate the predictors of global biodiversity patterns. However, mountain ecosystems are increasingly threatened by human land use and climate change. Since the consequences of such alterations on mountainous biodiversity and related ecosystem services are hardly known, research along elevational gradients is also of utmost importance from a conservation point of view. In addition to classical biodiversity research focusing on taxonomy, the significance of studying functional traits and their prominence in biodiversity ecosystem functioning (BEF) relationships is increasingly acknowledged. In this dissertation, I explore the patterns and drivers of mammal and dung beetle diversity along elevational and land use gradients on Mt. Kilimanjaro, Tanzania. Furthermore, I investigate the predictors of dung decomposition by dung beetles under different extinction scenarios. Mammals are not only charismatic, they also fulfil important roles in ecosystems. They provide important ecosystem services such as seed dispersal and nutrient cycling by turning over high amounts of biomass. In chapter II, I show that mammal diversity and community biomass both exhibited a unimodal distribution with elevation on Mt.Kilimanjaro and were mainly impacted by primary productivity, a measure of the total food abundance, and the protection status of study plots. Due to their large size and endothermy, mammals, in contrast to most arthopods, are theoretically predicted to be limited by food availability. My results are in concordance with this prediction. The significantly higher diversity and biomass in the Kilimanjaro National Park and in other conservation areas underscore the important role of habitat protection is vital for the conservation of large mammal biodiversity on tropical mountains. Dung beetles are dependent on mammals since they rely upon mammalian dung as a food and nesting resource. Dung beetles are also important ecosystem service providers: they play an important role in nutrient cycling, bioturbation, secondary seed dispersal and parasite suppression. In chapter III, I show that dung beetle diversity declined with elevation while dung beetle abundance followed a hump-shaped pattern along the elevational gradient. In contrast to mammals, dung beetle diversity was primarily predicted by temperature. Despite my attempt to accurately quantifiy mammalian dung resources by calculating mammalian defecation rates, I did not find an influence of dung resource availability on dung beetle richness. Instead, higher temperature translated into higher dung beetle diversity. Apart from being important ecosystem service providers, dung beetles are also model organisms for BEF studies since they rely on a resource which can be quantified easily. In chapter IV, I explore dung decomposition by dung beetles along the elevational gradient by means of an exclosure experiment in the presence of the whole dung beetle community, in the absence of large dung beetles and without any dung beetles. I show that dung decomposition was the highest when the dung could be decomposed by the whole dung beetle community, while dung decomposition was significantly reduced in the sole presence of small dung beetles and the lowest in the absence of dung beetles. Furthermore, I demonstrate that the drivers of dung decomposition were depend on the intactness of the dung beetle community. While body size was the most important driver in the presence of the whole dung beetle community, species richness gained in importance when large dung beetles were excluded. In the most perturbed state of the system with no dung beetles present, temperature was the sole driver of dung decomposition. In conclusion, abiotic drivers become more important predictors of ecosystem services the more the study system is disturbed. In this dissertation, I exemplify that the drivers of diversity along broad-scale climatic gradients on Mt. Kilimanjaro depend on the thermoregulatory strategy of organisms. While mammal diversity was mainly impacted by food/energy resources, dung beetle diversity was mainly limited by temperature. I also demonstrate the importance of protected areas for the preservation of large mammal biodiversity. Furthermore, I show that large dung beetles were disproportionately important for dung decomposition as dung decomposition significantly decreased when large dung beetles were excluded. As regards land use, I did not detect an overall effect on dung beetle and mammal diversity nor on dung beetle-mediated dung decomposition. However, for the most specialised mammal trophic guilds and dung beetle functional groups, negative land use effects were already visible. Even though the current moderate levels of land use on Mt. Kilimanjaro can sustain high levels of biodiversity, the pressure of the human population on Mt. Kilimanjaro is increasing and further land use intensification poses a great threat to biodiversity. In synergy wih land use, climate change is jeopardizing current patterns and levels of biodiversity with the potential to displace communities, which may have unpredictable consequences for ecosystem service provisioning in the future. N2 - Gradienten der Biodiversität, wie der Breitengradient der Artenvielfalt, gehören zu den bestbeschriebenen Mustern in der Ökologie. Dennoch bleiben die Mechanismen, die diese Gradienten steuern, unzureichend untersucht. Bergmassive eignen sich aufgrund ihrer hohen Artenvielfalt, ihrer räumlichen Begrenzung, der gleichmäßigen Veränderung abiotischer Faktoren mit der Höhe und ihres weltweiten Auftretens optimal zur Erforschung der Triebkräfte globaler Biodiversitätsmuster. Jedoch werden Gebirgs-Ökosysteme vermehrt durch menschliche Landnutzung und den Klimawandel bedroht. Da der Wissenstand über die Auswirkungen solcher Veränderungen auf die Biodiversität von Bergmassiven und zugehörigen Ökosystemdienstleistungen gering ist, nimmt die Erforschung von Höhengradienten auch aus der Perspektive des Artenschutzes eine besondere Bedeutung ein. In Ergänzung zur traditionellen, auf Taxonomie beruhenden Biodiversitätsforschung, wird die Wichtigkeit der Untersuchung funktioneller Merkmale und deren Bedeutung für Beziehungen zwischen Biodiversität und Ökosystemfunktionen (BEF) zunehmend anerkannt. In meiner Doktorarbeit untersuche ich entlang von Höhen- und Landnutzungsgradienten am Kilmandscharo (Tansania) die Muster und Triebkräfte der Artenvielfalt von Säugetieren und Dungkäfern als auch die Faktoren, die den Dungabbau durch Dungkäfer unter verschiedenen Aussterbe-Szenarien bestimmen. Säugetiere sind nicht nur charismatisch, sie nehmen auch wichtige Rollen in Ökosystemen ein. So erfüllen Säugetiere wichtige Ökosystemdienstleistungen wie die Verbreitung von Samen und sind maßgeblich am Nährstoffkreislauf durch den Umsatz großer Mengen von Biomasse beteiligt. Im zweiten Kapitel dieser Arbeit stelle ich dar, dass die Diversität und Biomasse der Säugetiergemeinschaft am Kilimandscharo eine unimodale Verteilung mit der Höhe aufweist. Dieses Muster wurde vor allem durch die Nettoprimärproduktion, ein Maß für die Nahrungsverfügbarkeit der Säugetiere, und den Schutzstatus der Untersuchungsgebiete bestimmt. Aufgrund ihrer Größe und Endothermie kann man schlussfolgern, dass für Säugetiere, im Unterschied zu den meisten Arthropoden, Nahrungsverfügbarkeit die Triebkraft der Diversität darstellt. Meine Resultate bestätigen diese Vorhersage. Die signifikant höhere Diversität und Biomasse der Säugetiere im Kilmandscharo Nationalpark und in anderen geschützten Gebieten unterstreicht die Wichtigkeit des Habitatschutzes für den Erhalt der Artenvielfalt großer Säugetiere in tropischen Bergmassiven. Dungkäfer stehen in enger Beziehung zu Säugetieren, da sie Säugetierdung als Nahrungs- und Nistmaterial benötigen. Dungkäfer übernehmen ebenfalls wichtige Ökosystemdienstleistungen: Sie spielen eine bedeutende Rolle im Nährstoffkreislauf und tragen entscheidend zur Bioturbation, der sekundären Verbreitung von Samen und der Unterdrückung von Schädlingen bei. Im dritten Kapitel weise ich nach, dass die Artenvielfalt der Dungkäfer mit der Höhe abnimmt, während die Abundanz der Käfer eine eingipfelige Verteilung zeigt. Im Unterschied zu den Säugetieren wurde die Diversität der Dungkäfer vor allem durch die Temperatur gesteuert. Obwohl ich versuchte, die vorhandenen Dungressourcen der Säugetiere möglichst genau durch die Berechung des Kotabsatzes zu quantifizieren, stellte ich keinen Einfluss von Ressourcenverfügbarkeit auf die Dungkäfer-Diversität fest. Stattdessen führte eine höhere Temperatur zu erhöhter Dungkäfer-Diversität. Abgesehen von ihrer Rolle als wichtige Ökosystemdienstleister stellen Dungkäfer auch Modellorganismen für BEF-Studien dar, da sie eine leicht zu quantifizierende Ressource benötigen. Im vierten Kapitel untersuche ich den Dungabbau von Dungkäfern entlang des Höhengradienten mithilfe eines Ausschlussexperiments: in der Gegenwart der gesamten Dungkäfergemeinschaft, unter dem Ausschluss großer Dungkäfer und in der Abwesenheit aller Dungkäfer. Der Dungabbau war am größten, wenn der Abbau durch die gesamte Dungkäfergemeinschaft erfolgen konnte. Waren nur kleine Dungkäfer anwesend, waren die Dungabbauraten deutlich geringer als in der Gegenwart großer Dungkäfer, während sie im Falle des Ausschlusses aller Dungkäfer minimal wurden. Außerdem konnte ich nachweisen, dass die Triebkräfte des Dungabbaus von dem Zustand der Dungkäfergemeinschaft abhingen. Während die mittlere Körpergröße von Dungkäfern der wichtigste Faktor darstellte, wenn die Lebensgemeinschaft vollständig war, erlangte die Artenvielfalt an Bedeutung, wenn große Dungkäfer abwesend waren. Im gestörtesten Zustand des Systems, wo der Dungabbau ohne Dungkäfer erfolgte, war Temperatur der einzige Faktor, der den Dungabbau bestimmte. Abiotische Faktoren nehmen an Wichtigkeit als Triebkräfte von Ökosystemdienstleistungen zu, je mehr das System gestört ist. Zusammenfassend wird in dieser Dissertation gezeigt, dass die Triebkräfte der Artenvielfalt entlang weitreichender klimatischer Gradienten am Kilimandscharo von der thermoregulatorischen Strategie der Organismen abhängen. Während die Diversität von Säugetieren vor allem durch die Nahrungsverfügbarkeit beeinflusst wurde, wurde die Dungkäfer-Diversität vor allem durch die Temperatur gesteuert. Außerdem sind geschützte Flächen für den Erhalt der Artenvielfalt großer Säugetiere unerlässlich. Weiterhin veranschauliche ich die herausragende Bedeutung großer Dungkäfer für den Dungabbau, da letzterer deutlich abnahm, wenn große Dungkäfer ausgeschlossen wurden. Betreffend der Landnutzung war insgesamt kein Einfluss auf die Dungkäfer- oder Säugetier-Diversität oder den Dungabbau durch Dungkäfer feststellbar. Anders sah es auf Ebene der am meisten spezialisierten trophischen Gilden der Säugetiere und funktionellen Gruppen der Dungkäfer aus: Hier waren bereits negative Auswirkungen sichtbar. Obwohl unter dem derzeitigen gemäßigten Ausmaß der Landnutzung am Kilimandscharo eine hohe Artenvielfalt aufrechterhalten werden kann, steigt der Druck durch das Bevölkerungswachstum, und eine zunehmende Intensivierung der Landwirtschaft stellt eine große Bedrohung für die Biodiversität dar. Im Zusammenspiel mit der Landnutzung gefährdet der Klimawandel das Niveau und die Verteilung der Biodiversität, mit dem Potential, Gemeinschaften von Organismen zu verdrängen, was unvorhersagbare Auswirkungen auf die Bereitstellung von Ökosystemdienstleistungen in der Zukunft haben könnte. KW - Kilimandscharo KW - Biodiversität KW - Säugetiere KW - Zersetzer KW - Scarabaeidae KW - Höhengradient KW - Landnutzungsgradient KW - Arten-Energy-Theory KW - Ökologie KW - Diversität KW - elevational gradient KW - land use KW - species-energy-theory KW - ecology KW - ecosystem service Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191950 ER -