TY - JOUR A1 - Sturm, Julia B. A1 - Hess, Michael A1 - Weibel, Stephanie A1 - Chen, Nanhei G. A1 - Yu, Yong A. A1 - Zhang, Quian A1 - Donat, Ulrike A1 - Reiss, Cora A1 - Gambaryan, Stepan A1 - Krohne, Georg A1 - Stritzker, Jochen A1 - Szalay, Aladar A. T1 - Functional hyper-IL-6 from vaccinia virus-colonized tumors triggers platelet formation and helps to alleviate toxicity of mitomycin C enhanced virus therapy N2 - Background: Combination of oncolytic vaccinia virus therapy with conventional chemotherapy has shown promise for tumor therapy. However, side effects of chemotherapy including thrombocytopenia, still remain problematic. Methods: Here, we describe a novel approach to optimize combination therapy of oncolytic virus and chemotherapy utilizing virus-encoding hyper-IL-6, GLV-1h90, to reduce chemotherapy-associated side effects. Results: We showed that the hyper-IL-6 cytokine was successfully produced by GLV-1h90 and was functional both in cell culture as well as in tumor-bearing animals, in which the cytokine-producing vaccinia virus strain was well tolerated. When combined with the chemotherapeutic mitomycin C, the anti-tumor effect of the oncolytic virotherapy was significantly enhanced. Moreover, hyper-IL-6 expression greatly reduced the time interval during which the mice suffered from chemotherapy-induced thrombocytopenia. Conclusion: Therefore, future clinical application would benefit from careful investigation of additional cytokine treatment to reduce chemotherapy-induced side effects. KW - Biologie KW - vaccinia virus KW - cancer KW - cytokine KW - hyper-IL-6 KW - oncolysis KW - chemotherapy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75224 ER - TY - JOUR A1 - Lichthardt, Sven A1 - Kerscher, Alexander A1 - Dietz, Ulrich A. A1 - Jurowich, Christian A1 - Kunzmann, Volker A1 - von Rahden, Burkhard H. A. A1 - Germer, Christoph-Thomas A1 - Wiegering, Armin T1 - Original article: role of adjuvant chemotherapy in a perioperative chemotherapy regimen for gastric cancer JF - BMC Cancer N2 - Background Multimodal treatment strategies – perioperative chemotherapy (CTx) and radical surgery – are currently accepted as treatment standard for locally advanced gastric cancer. However, the role of adjuvant postoperative CTx (postCTx) in addition to neoadjuvant preoperative CTx (preCTx) in this setting remains controversial. Methods Between 4/2006 and 12/2013, 116 patients with locally advanced gastric cancer were treated with preCTx. 72 patients (62 %), in whom complete tumor resection (R0, subtotal/total gastrectomy with D2-lymphadenectomy) was achieved, were divided into two groups, one of which receiving adjuvant therapy (n = 52) and one without (n = 20). These groups were analyzed with regard to survival and exclusion criteria for adjuvant therapy. Results Postoperative complications, as well as their severity grade, did not correlate with fewer postCTx cycles administered (p = n.s.). Long-term survival was shorter in patients receiving postCTx in comparison to patients without postCTx, but did not show statistical significance. In per protocol analysis by excluding two patients with perioperative death, a shorter 3-year survival rate was observed in patients receiving postCTx compared to patients without postCTx (3-year survival: 71.2 % postCTx group vs. 90.0 % non-postCTx group; p = 0.038). Conclusion These results appear contradicting to the anticipated outcome. While speculative, they question the value of post-CTx. Prospectively randomized studies are needed to elucidate the role of postCTx. KW - gastric cancer KW - chemotherapy KW - neoadjuvant KW - multimodal KW - complication KW - adjuvant KW - risk factor KW - survival Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147743 VL - 16 IS - 650 ER - TY - JOUR A1 - Memmel, Simon A1 - Sisario, Dmitri A1 - Zöller, Caren A1 - Fiedler, Vanessa A1 - Katzer, Astrid A1 - Heiden, Robin A1 - Becker, Nicholas A1 - Eing, Lorenz A1 - Ferreira, Fábio L.R. A1 - Zimmermann, Heiko A1 - Sauer, Markus A1 - Flentje, Michael A1 - Sukhorukov, Vladimir L. A1 - Djuzenova, Cholpon S. T1 - Migration pattern, actin cytoskeleton organization and response to PI3K-, mTOR-, and Hsp90-inhibition of glioblastoma cells with different invasive capacities JF - Oncotarget N2 - High invasiveness and resistance to chemo- and radiotherapy of glioblastoma multiforme (GBM) make it the most lethal brain tumor. Therefore, new treatment strategies for preventing migration and invasion of GBM cells are needed. Using two different migration assays, Western blotting, conventional and super-resolution (dSTORM) fluorescence microscopy we examine the effects of the dual PI3K/mTOR-inhibitor PI-103 alone and in combination with the Hsp90 inhibitor NVP-AUY922 and/or irradiation on the migration, expression of marker proteins, focal adhesions and F-actin cytoskeleton in two GBM cell lines (DK-MG and SNB19) markedly differing in their invasive capacity. Both lines were found to be strikingly different in morphology and migration behavior. The less invasive DK-MG cells maintained a polarized morphology and migrated in a directionally persistent manner, whereas the highly invasive SNB19 cells showed a multipolar morphology and migrated randomly. Interestingly, a single dose of 2 Gy accelerated wound closure in both cell lines without affecting their migration measured by single-cell tracking. PI-103 inhibited migration of DK-MG (p53 wt, PTEN wt) but not of SNB19 (p53 mut, PTEN mut) cells probably due to aberrant reactivation of the PI3K pathway in SNB19 cells treated with PI-103. In contrast, NVP-AUY922 exerted strong anti-migratory effects in both cell lines. Inhibition of cell migration was associated with massive morphological changes and reorganization of the actin cytoskeleton. Our results showed a cell line-specific response to PI3K/mTOR inhibition in terms of GBM cell motility. We conclude that anti-migratory agents warrant further preclinical investigation as potential therapeutics for treatment of GBM. KW - chemotherapy KW - glioblastoma multiforme KW - migration KW - treatment Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170719 VL - 8 IS - 28 ER - TY - JOUR A1 - Wiegering, Armin A1 - Matthes, Niels A1 - Mühling, Bettina A1 - Koospal, Monika A1 - Quenzer, Anne A1 - Peter, Stephanie A1 - Germer, Christoph-Thomas A1 - Linnebacher, Michael A1 - Otto, Christoph T1 - Reactivating p53 and Inducing Tumor Apoptosis (RITA) Enhances the Response of RITA-Sensitive Colorectal Cancer Cells to Chemotherapeutic Agents 5-Fluorouracil and Oxaliplatin JF - Neoplasia N2 - Colorectal carcinoma (CRC) is the most common cancer of the gastrointestinal tract with frequently dysregulated intracellular signaling pathways, including p53 signaling. The mainstay of chemotherapy treatment of CRC is 5-fluorouracil (5FU) and oxaliplatin. The two anticancer drugs mediate their therapeutic effect via DNA damage-triggered signaling. The small molecule reactivating p53 and inducing tumor apoptosis (RITA) is described as an activator of wild-type and reactivator of mutant p53 function, resulting in elevated levels of p53 protein, cell growth arrest, and cell death. Additionally, it has been shown that RITA can induce DNA damage signaling. It is expected that the therapeutic benefits of 5FU and oxaliplatin can be increased by enhancing DNA damage signaling pathways. Therefore, we highlighted the antiproliferative response of RITA alone and in combination with 5FU or oxaliplatin in human CRC cells. A panel of long-term established CRC cell lines (n = 9) including p53 wild-type, p53 mutant, and p53 null and primary patient-derived, low-passage cell lines (n = 5) with different p53 protein status were used for this study. A substantial number of CRC cells with pronounced sensitivity to RITA (IC\(_{50}\)< 3.0 μmol/l) were identified within established (4/9) and primary patient-derived (2/5) CRC cell lines harboring wild-type or mutant p53 protein. Sensitivity to RITA appeared independent of p53 status and was associated with an increase in antiproliferative response to 5FU and oxaliplatin, a transcriptional increase of p53 targets p21 and NOXA, and a decrease in MYC mRNA. The effect of RITA as an inducer of DNA damage was shown by a strong elevation of phosphorylated histone variant H2A.X, which was restricted to RITA-sensitive cells. Our data underline the primary effect of RITA, inducing DNA damage, and demonstrate the differential antiproliferative effect of RITA to CRC cells independent of p53 protein status. We found a substantial number of RITA-sensitive CRC cells within both panels of established CRC cell lines and primary patient-derived CRC cell lines (6/14) that provide a rationale for combining RITA with 5FU or oxaliplatin to enhance the antiproliferative response to both chemotherapeutic agents. KW - colorectal carcinoma KW - reactivating p53 and inducing tumor apoptosis (RITA) KW - chemotherapy KW - 5-fluorouracil KW - oxaliplatin Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171067 VL - 19 IS - 4 ER - TY - JOUR A1 - Bartmann, Catharina A1 - Janaki Raman, Sudha R. A1 - Flöter, Jessica A1 - Schulze, Almut A1 - Bahlke, Katrin A1 - Willingstorfer, Jana A1 - Strunz, Maria A1 - Wöckel, Achim A1 - Klement, Rainer J. A1 - Kapp, Michaela A1 - Djuzenova, Cholpon S. A1 - Otto, Christoph A1 - Kämmerer, Ulrike T1 - Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation JF - Cancer & Metabolism N2 - Background: Ketogenic diets (KDs) or short-term fasting are popular trends amongst supportive approaches for cancer patients. Beta-hydroxybutyrate (3-OHB) is the main physiological ketone body, whose concentration can reach plasma levels of 2–6 mM during KDs or fasting. The impact of 3-OHB on the biology of tumor cells described so far is contradictory. Therefore, we investigated the effect of a physiological concentration of 3 mM 3-OHB on metabolism, proliferation, and viability of breast cancer (BC) cells in vitro. Methods: Seven different human BC cell lines (BT20, BT474, HBL100, MCF-7, MDA-MB 231, MDA-MB 468, and T47D) were cultured in medium with 5 mM glucose in the presence of 3 mM 3-OHB at mild hypoxia (5% oxygen) or normoxia (21% oxygen). Metabolic profiling was performed by quantification of the turnover of glucose, lactate, and 3-OHB and by Seahorse metabolic flux analysis. Expression of key enzymes of ketolysis as well as the main monocarboxylic acid transporter MCT2 and the glucose-transporter GLUT1 was analyzed by RT-qPCR and Western blotting. The effect of 3-OHB on short- and long-term cell proliferation as well as chemo- and radiosensitivity were also analyzed. Results: 3-OHB significantly changed the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in BT20 cells resulting in a more oxidative energetic phenotype. MCF-7 and MDA-MB 468 cells had increased ECAR only in response to 3-OHB, while the other three cell types remained uninfluenced. All cells expressed MCT2 and GLUT1, thus being able to uptake the metabolites. The consumption of 3-OHB was not strongly linked to mRNA overexpression of key enzymes of ketolysis and did not correlate with lactate production and glucose consumption. Neither 3-OHB nor acetoacetate did interfere with proliferation. Further, 3-OHB incubation did not modify the response of the tested BC cell lines to chemotherapy or radiation. Conclusions: We found that a physiological level of 3-OHB can change the energetic profile of some BC cell lines. However, 3-OHB failed to influence different biologic processes in these cells, e.g., cell proliferation and the response to common breast cancer chemotherapy and radiotherapy. Thus, we have no evidence that 3-OHB generally influences the biology of breast cancer cells in vitro. KW - ketogenic diet KW - β-Hydroxybutyrate KW - ketone bodies KW - breast cancer KW - seahorse KW - metabolic profile KW - chemotherapy KW - ionizing radiation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175607 VL - 6 IS - 8 ER -