TY - JOUR A1 - Grob, Robin A1 - Tritscher, Clara A1 - Grübel, Kornelia A1 - Stigloher, Christian A1 - Groh, Claudia A1 - Fleischmann, Pauline N. A1 - Rössler, Wolfgang T1 - Johnston's organ and its central projections in Cataglyphis desert ants JF - Journal of Comparative Neurology N2 - The Johnston's organ (JO) in the insect antenna is a multisensory organ involved in several navigational tasks including wind‐compass orientation, flight control, graviception, and, possibly, magnetoreception. Here we investigate the three dimensional anatomy of the JO and its neuronal projections into the brain of the desert ant Cataglyphis, a marvelous long‐distance navigator. The JO of C. nodus workers consists of 40 scolopidia comprising three sensory neurons each. The numbers of scolopidia slightly vary between different sexes (female/male) and castes (worker/queen). Individual scolopidia attach to the intersegmental membrane between pedicel and flagellum of the antenna and line up in a ring‐like organization. Three JO nerves project along the two antennal nerve branches into the brain. Anterograde double staining of the antennal afferents revealed that JO receptor neurons project to several distinct neuropils in the central brain. The T5 tract projects into the antennal mechanosensory and motor center (AMMC), while the T6 tract bypasses the AMMC via the saddle and forms collaterals terminating in the posterior slope (PS) (T6I), the ventral complex (T6II), and the ventrolateral protocerebrum (T6III). Double labeling of JO and ocellar afferents revealed that input from the JO and visual information from the ocelli converge in tight apposition in the PS. The general JO anatomy and its central projection patterns resemble situations in honeybees and Drosophila. The multisensory nature of the JO together with its projections to multisensory neuropils in the ant brain likely serves synchronization and calibration of different sensory modalities during the ontogeny of navigation in Cataglyphis. KW - ant brain KW - chordotonal organ KW - graviception KW - magnetic compass KW - multisensory integration KW - navigation KW - wind compass Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225679 VL - 529 IS - 8 SP - 2138 EP - 2155 ER - TY - JOUR A1 - Habenstein, Jens A1 - Amini, Emad A1 - Grübel, Kornelia A1 - el Jundi, Basil A1 - Rössler, Wolfgang T1 - The brain of Cataglyphis ants: Neuronal organization and visual projections JF - Journal of Comparative Neurology N2 - Cataglyphis ants are known for their outstanding navigational abilities. They return to their inconspicuous nest after far‐reaching foraging trips using path integration, and whenever available, learn and memorize visual features of panoramic sceneries. To achieve this, the ants combine directional visual information from celestial cues and panoramic scenes with distance information from an intrinsic odometer. The largely vision‐based navigation in Cataglyphis requires sophisticated neuronal networks to process the broad repertoire of visual stimuli. Although Cataglyphis ants have been subjected to many neuroethological studies, little is known about the general neuronal organization of their central brain and the visual pathways beyond major circuits. Here, we provide a comprehensive, three‐dimensional neuronal map of synapse‐rich neuropils in the brain of Cataglyphis nodus including major connecting fiber systems. In addition, we examined neuronal tracts underlying the processing of visual information in more detail. This study revealed a total of 33 brain neuropils and 30 neuronal fiber tracts including six distinct tracts between the optic lobes and the cerebrum. We also discuss the importance of comparative studies on insect brain architecture for a profound understanding of neuronal networks and their function. KW - 3D reconstruction KW - ant brain KW - antennal lobes KW - central complex KW - insect KW - mushroom bodies KW - optical tracts Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218212 VL - 528 IS - 18 SP - 3479 EP - 3506 ER -