TY - JOUR A1 - Grob, Robin A1 - Heinig, Niklas A1 - Grübel, Kornelia A1 - Rössler, Wolfgang A1 - Fleischmann, Pauline N. T1 - Sex-specific and caste-specific brain adaptations related to spatial orientation in Cataglyphis ants JF - Journal of Comparative Neurology N2 - Cataglyphis desert ants are charismatic central place foragers. After long-ranging foraging trips, individual workers navigate back to their nest relying mostly on visual cues. The reproductive caste faces other orientation challenges, i.e. mate finding and colony foundation. Here we compare brain structures involved in spatial orientation of Cataglyphis nodus males, gynes, and foragers by quantifying relative neuropil volumes associated with two visual pathways, and numbers and volumes of antennal lobe (AL) olfactory glomeruli. Furthermore, we determined absolute numbers of synaptic complexes in visual and olfactory regions of the mushroom bodies (MB) and a major relay station of the sky-compass pathway to the central complex (CX). Both female castes possess enlarged brain centers for sensory integration, learning, and memory, reflected in voluminous MBs containing about twice the numbers of synaptic complexes compared with males. Overall, male brains are smaller compared with both female castes, but the relative volumes of the optic lobes and CX are enlarged indicating the importance of visual guidance during innate behaviors. Male ALs contain greatly enlarged glomeruli, presumably involved in sex-pheromone detection. Adaptations at both the neuropil and synaptic levels clearly reflect differences in sex-specific and caste-specific demands for sensory processing and behavioral plasticity underlying spatial orientation. KW - antennal lobe KW - synaptic plasticity KW - polymorphism KW - optic lobes KW - mushroom bodies KW - learning and memory KW - central complex Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257299 VL - 529 IS - 18 ER - TY - JOUR A1 - Stieb, Sara Mae A1 - Kelber, Christina A1 - Wehner, Rüdiger A1 - Rössler, Wolfgang T1 - Antennal-Lobe Organization in Desert Ants of the Genus Cataglyphis JF - Brain, Behavior and Evolution N2 - Desert ants of the genus Cataglyphis possess remarkable visual navigation capabilities. Although Cataglyphis species lack a trail pheromone system, Cataglyphis fortis employs olfactory cues for detecting nest and food sites. To investigate potential adaptations in primary olfactory centers of the brain of C. fortis, we analyzed olfactory glomeruli (odor processing units) in their antennal lobes and compared them to glomeruli in different Cataglyphis species. Using confocal imaging and 3D reconstruction, we analyzed the number, size and spatial arrangement of olfactory glomeruli in C. fortis, C.albicans, C.bicolor, C.rubra, and C.noda. Workers of all Cataglyphis species have smaller numbers of glomeruli (198–249) compared to those previously found in olfactory-guided ants. Analyses in 2 species of Formica – a genus closely related to Cataglyphis – revealed substantially higher numbers of olfactory glomeruli (c. 370), which is likely to reflect the importance of olfaction in these wood ant species. Comparisons between Cataglyphis species revealed 2 special features in C. fortis. First, with c. 198 C. fortis has the lowest number of glomeruli compared to all other species. Second, a conspicuously enlarged glomerulus is located close to the antennal nerve entrance. Males of C. fortis possess a significantly smaller number of glomeruli (c. 150) compared to female workers and queens. A prominent male-specific macroglomerulus likely to be involved in sex pheromone communication occupies a position different from that of the enlarged glomerulus in females. The behavioral significance of the enlarged glomerulus in female workers remains elusive. The fact that C. fortis inhabits microhabitats (salt pans) that are avoided by all other Cataglyphis species suggests that extreme ecological conditions may not only have resulted in adaptations of visual capabilities, but also in specializations of the olfactory system. KW - olfactory glomeruli KW - plasticity KW - ant KW - antennal lobe KW - glomerulus KW - insects KW - interspecific comparison KW - macroglomerulus KW - olfaction Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196815 SN - 0006-8977 SN - 1421-9743 N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 77 IS - 3 ER - TY - JOUR A1 - Anton, Sylvia A1 - Rössler, Wolfgang T1 - Plasticity and modulation of olfactory circuits in insects JF - Cell and Tissue Research N2 - Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed. KW - antenna KW - antennal lobe KW - mushroom body KW - neuromodulation KW - structural synaptic plasticity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235820 SN - 0302-766X VL - 383 ER - TY - JOUR A1 - Rössler, Wolfgang A1 - Brill, Martin F. T1 - Parallel processing in the honeybee olfactory pathway: structure, function, and evolution JF - Journal of Comparative Physiology A N2 - Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to “what-” and “where” subsystems in visual pathways, this suggests two parallel olfactory subsystems providing “what-” (quality) and “when” (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect. KW - multi-unit recording KW - antennal lobe KW - glomeruli KW - projection neurons KW - mushroom bodies Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132548 VL - 199 ER - TY - JOUR A1 - Brill, Martin F. A1 - Meyer, Anneke A1 - Roessler, Wolfgang T1 - It takes two—coincidence coding within the dual olfactory pathway of the honeybee JF - Frontiers in Physiology N2 - To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code). KW - olfaction KW - mushroom body KW - insect KW - coincidence KW - multi-electrode-recording KW - antennal lobe Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126179 VL - 6 IS - 208 ER - TY - THES A1 - Stieb, Sara Mae T1 - Synaptic plasticity in visual and olfactory brain centers of the desert ant Cataglyphis T1 - Synaptische Plastizität visueller und olfaktorischer Gehirnzentren der Wüstenameise Cataglyphis N2 - Wüstenameisen der Gattung Cataglyphis wurden zu Modellsystemen bei der Erforschung der Navigationsmechanismen der Insekten. Ein altersabhängiger Polyethismus trennt deren Kolonien in Innendienst-Arbeiterinnen und kurzlebige lichtausgesetzte Fourageure. Nachdem die Ameisen in strukturlosem oder strukturiertem Gelände bis zu mehrere hundert Meter weite Distanzen zurückgelegt haben, können sie präzise zu ihrer oft unauffälligen Nestöffnung zurückzukehren. Um diese enorme Navigationsleistung zu vollbringen, bedienen sich die Ameisen der sogenannten Pfadintegration, welche die Informationen aus einem Polarisationskompass und einem Entfernungsmesser verrechnet; des Weiteren orientieren sie sich an Landmarken und nutzen olfaktorische Signale. Im Fokus dieser Arbeit steht C. fortis, welche in Salzpfannen des westlichen Nordafrikas endemisch ist - einem Gebiet, welches vollständig von anderen Cataglyphis Arten gemieden wird. Die Tatsache, dass Cataglyphis eine hohe Verhaltensflexibilität aufweist, welche mit sich drastisch ändernden sensorischen Anforderungen verbunden ist, macht diese Ameisen zu besonders interessanten Studienobjekten bei der Erforschung synaptischer Plastizität visueller und olfaktorischer Gehirnzentren. Diese Arbeit fokussiert auf plastische Änderungen in den Pilzkörpern (PK) - sensorischen Integrationszentren, die mutmaßlich an Lern- und Erinnerungsprozessen, und auch vermutlich am Prozess des Landmarkenlernens beteiligt sind - und auf plastische Änderungen in den synaptischen Komplexen des Lateralen Akzessorischen Lobus (LAL) – einer bekannten Relaisstation in der Polarisations-Leitungsbahn. Um die strukturelle synaptische Plastizität der PK in C. fortis zu quantifizieren, wurden mithilfe immunozytochemischer Färbungen die prä- und postsynaptischen Profile klar ausgeprägter synaptischer Komplexe (Mikroglomeruli, MG) der visuellen Region (Kragen) und der olfaktorischen Region (Lippe) der PK-Kelche visualisiert. Die Ergebnisse legen dar, dass eine Volumenzunahme der PK-Kelche während des Übergangs von Innendiensttieren zu Fourageuren von einer Abnahme der MG-Anzahl im Kragen und, mit einem geringeren Anteil, in der Lippe - dieser Effekt wird als Pruning bezeichnet - und einem gleichzeitigen Auswachsen an Dendriten PK-intrinsischer Kenyonzellen begleitet wird. Im Dunkeln gehaltene Tiere unterschiedlichen Alters zeigen nach Lichtaussetzung den gleichen Effekt und im Dunkel gehaltene, den Fourageuren altersmäßig angepasste Tiere weisen eine vergleichbare MG-Anzahl im Kragen auf wie Innendiensttiere. Diese Ergebnisse deuten darauf hin, dass die immense strukturelle synaptische Plastizität in der Kragenregion der PK-Kelche hauptsächlich durch visuelle Erfahrungen ausgelöst wird und nicht ausschließlich mit Hilfe eines internen Programms abgespielt wird. Ameisen, welche unter Laborbedingungen bis zu einem Jahr alt wurden, zeigen eine vergleichbare Plastizität. Dies deutet darauf hin, dass das System über die ganze Lebensspanne eines Individuums flexibel bleibt. Erfahrene Fourageure wurden in Dunkelheit zurückgeführt, um zu untersuchen, ob die lichtausgelöste synaptische Umstrukturierung reversibel ist, doch ihre PK zeigen nur einige die Zurückführung widerspiegelnde Plastizitätsausprägungen, besonders eine Änderung der präsynaptischen Synapsinexprimierung. Mithilfe immunozytochemischer Färbungen, konfokaler Mikroskopie und 3D-Rekonstruktionen wurden die prä- und postsynaptischen Strukturen synaptischer Komplexe des LAL in C. fortis analysiert und potentielle strukturelle Änderungen bei Innendiensttieren und Fourageuren quantifiziert. Die Ergebnisse zeigen, dass diese Komplexe aus postsynaptischen, in einer zentralen Region angeordneten Fortsätzen bestehen, welche umringt sind von einem präsynaptischen kelchartigen Profil. Eingehende und ausgehende Trakte wurden durch Farbstoffinjektionen identifiziert: Projektionsneurone des Anterioren Optischen Tuberkels kontaktieren Neurone, welche in den Zentralkomplex ziehen. Der Verhaltensübergang wird von einer Zunahme an synaptischen Komplexen um ~13% begleitet. Dieser Zuwachs suggeriert eine Art Kalibrierungsprozess in diesen potentiell kräftigen synaptischen Kontakten, welche vermutlich eine schnelle und belastbare Signalübertragung in der Polarisationsbahn liefern. Die Analyse von im Freiland aufgenommener Verhaltenweisen von C. fortis enthüllen, dass die Ameisen, bevor sie mit ihrer Fouragiertätigkeit anfangen, bis zu zwei Tage lang in unmittelbarer Nähe des Nestes Entdeckungsläufe unternehmen, welche Pirouetten ähnliche Drehungen beinhalten. Während dieser Entdeckungsläufe sammeln die Ameisen Lichterfahrung und assoziieren möglicherweise den Nesteingang mit spezifischen Landmarken oder werden anderen visuellen Informationen, wie denen des Polarisationsmusters, ausgesetzt und adaptieren begleitend ihre neuronalen Netzwerke an die bevorstehende Herausforderung. Darüber hinaus könnten die Pirouetten einer Stimulation der an der Polarisationsbahn beteiligten neuronalen Netzwerke dienen. Videoanalysen legen dar, dass Lichtaussetzung nach drei Tagen die Bewegungsaktivität der Ameisen heraufsetzt. Die Tatsache, dass die neuronale Umstrukturierung in visuellen Zentren wie auch die Veränderungen im Verhalten im selben Zeitrahmen ablaufen, deutet darauf hin, dass ein Zusammenhang zwischen struktureller synaptischer Plastizität und dem Verhaltensübergang von der Innendienst- zur Fouragierphase bestehen könnte. Cataglyphis besitzen hervorragende visuelle Navigationsfähigkeiten, doch sie nutzen zudem olfaktorische Signale, um das Nest oder die Futterquelle aufzuspüren. Mithilfe konfokaler Mikroskopie und 3D-Rekonstruktionen wurden potentielle Anpassungen der primären olfaktorischen Gehirnzentren untersucht, indem die Anzahl, Größe und räumliche Anordnung olfaktorischer Glomeruli im Antennallobus von C. fortis, C. albicans, C. bicolor, C. rubra, und C. noda verglichen wurde. Arbeiterinnen aller Cataglyphis-Arten haben eine geringere Glomeruli-Anzahl im Vergleich zu denen der mehr olfaktorisch-orientierten Formica Arten - einer Gattung nah verwandt mit Cataglyphis - und denen schon bekannter olfaktorisch-orientierter Ameisenarten. C. fortis hat die geringste Anzahl an Glomeruli im Vergleich zu allen anderen Cataglyphis-Arten und besitzt einen vergrößerten Glomerulus, der nahe dem Eingang des Antennennerves lokalisiert ist. C. fortis Männchen besitzen eine signifikant geringere Glomeruli-Anzahl im Vergleich zu Arbeiterinnen und Königinnen und haben einen hervorstechenden Männchen-spezifischen Makroglomerulus, welcher wahrscheinlich an der Pheromon-Kommunikation beteiligt ist. Die Verhaltensrelevanz des vergrößerten Glomerulus der Arbeiterinnen bleibt schwer fassbar. Die Tatsache, dass C. fortis Mikrohabitate bewohnt, welche von allen anderen Cataglyphis Arten gemieden werden, legt nahe, dass extreme ökologische Bedingungen nicht nur zu Anpassungen der visuellen Fähigkeiten, sondern auch des olfaktorischen Systems geführt haben. Die vorliegende Arbeit veranschaulicht, dass Cataglyphis ein exzellenter Kandidat ist bei der Erforschung neuronaler Mechanismen, welche Navigationsfunktionalitäten zugrundeliegen, und bei der Erforschung neuronaler Plastizität, welche verknüpft ist mit der lebenslangen Flexibilität eines individuellen Verhaltensrepertoires. N2 - Desert ants of the genus Cataglyphis have become model systems for the study of insect navigation. An age-related polyethism subdivides their colonies into interior workers and short-lived light-exposed foragers. While foraging in featureless and cluttered terrain over distances up to several hundred meters, the ants are able to precisely return back to their often inconspicuous nest entrance. They accomplish this enormous navigational performance by using a path integration system - including a polarization compass and an odometer - as their main navigational means in addition to landmark-dependent orientation and olfactory cues. C. fortis, being the focus of the present thesis, is endemic to the salt flats of western North Africa, which are completely avoided by other Cataglyphis species. The fact that Cataglyphis ants undergo a behavioral transition associated with drastically changing sensory demands makes these ants particularly interesting for studying synaptic plasticity in visual and olfactory brain centers. This thesis focuses on plastic changes in the mushroom bodies (MBs) - sensory integration centers supposed to be involved in learning and memory presumably including landmark learning - and in synaptic complexes belonging to the lateral accessory lobe (LAL) known to be a relay station in the polarization processing pathway. To investigate structural synaptic plasticity in the MBs of C. fortis, synaptic complexes (microglomeruli, MG) in the visual (collar) and olfactory (lip) input regions of the MB calyx were immunolabeled and their pre- and postsynaptic profiles were quantified. The results show that a volume increase of the MB calyx during behavioral transition is associated with a decrease of MG number - an effect called pruning - in the collar and, less pronounced, in the lip that goes along with dendritic expansion in MB intrinsic Kenyon cells. Light-exposure of dark-reared ants of different age classes revealed similar effects and dark-reared ants age-matched to foragers had MG numbers comparable to those of interior workers. The results indicate that the enormous structural synaptic plasticity of the MB calyx collar is primarily driven by visual experience rather than by an internal program. Ants aged artificially for up to one year expressed a similar plasticity indicating that the system remains flexible over the entire life-span. To investigate whether light-induced synaptic reorganization is reversible, experienced foragers were transferred back to darkness with the result that their MBs exhibit only some reverse-type characteristics, in particular differences in presynaptic synapsin expression. To investigate the structure of large synaptic complexes in the LAL of C. fortis and to detect potential structural changes, pre- and postsynaptic profiles in interior workers and foragers were immunolabeled and quantified by using confocal imaging and 3D-reconstruction. The results show that these complexes consist of postsynaptic processes located in a central region that is surrounded by a cup-like presynaptic profile. Tracer injections identified input and output tracts of the LAL: projection neurons from the anterior optic tubercle build connections with neurons projecting to the central complex. The behavioral transition is associated with an increase by ~13% of synaptic complexes suggesting that the polarization pathway may undergo some sort of calibration process. The structural features of these synaptic contacts indicate that they may serve a fast and reliable signal transmission in the polarization vision pathway. Behavioral analyses of C. fortis in the field revealed that the ants perform exploration runs including pirouette-like turns very close to the nest entrance for a period of up to two days, before they actually start their foraging activity. During these orientation runs the ants gather visual experience and might associate the nest entrance with specific landmarks or get entrained to other visual information like the polarization pattern, and, concomitantly adapt their neuronal circuitries to the upcoming challenges. Moreover, the pirouettes may serve to stimulate and calibrate the neuronal networks involved in the polarization compass pathway. Video recordings and analyses demonstrate that light experience enhanced the ants’ locomotor activity after three days of exposure. The fact that both the light-induced behavioral and neuronal changes in visual brain centers occur in the same time frame suggests that there may be a link between structural synaptic plasticity and the behavioral transition from interior tasks to outdoor foraging. Desert ants of the genus Cataglyphis possess remarkable visual navigation capabilities, but also employ olfactory cues for detecting nest and food sites. Using confocal imaging and 3D-reconstruction, potential adaptations in primary olfactory brain centers were analyzed by comparing the number, size and spatial arrangement of olfactory glomeruli in the antennal lobe of C. fortis, C. albicans, C. bicolor, C. rubra, and C. noda. Workers of all Cataglyphis species have smaller numbers of glomeruli compared to those of more olfactory-guided Formica species - a genus closely related to Cataglyphis - and to those previously found in other olfactory-guided ant species. C. fortis has the lowest number of glomeruli compared to all other species, but possesses a conspicuously enlarged glomerulus that is located close to the antennal nerve entrance. Males of C. fortis have a significantly smaller number of glomeruli compared to female workers and queens and a prominent male-specific macroglomerulus likely to be involved in sex pheromone communication. The behavioral significance of the enlarged glomerulus in female workers remains elusive. The fact that C. fortis inhabits microhabitats that are avoided by all other Cataglyphis species suggests that extreme ecological conditions may not only have resulted in adaptations of visual capabilities, but also in specializations of the olfactory system. The present thesis demonstrates that Cataglyphis is an excellent candidate for studying the neuronal mechanisms underlying navigational features and for studying neuronal plasticity associated with the ant’s lifelong flexibility of individual behavioral repertoires. KW - Neuroethologie KW - Plastizität KW - Cataglyphis KW - Visuelles System KW - Soziale Insekten KW - Synaptische Plastizität KW - Verhaltenplastizität KW - Pilzkörper KW - Mikroglomeruli KW - Antennallobus KW - synaptic plasticity KW - behavioral maturation KW - mushroom body KW - microglomeruli KW - antennal lobe Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85584 ER - TY - THES A1 - Kelber, Christina T1 - The olfactory system of leafcutting ants: neuroanatomy and the correlation to social organization T1 - Das olfaktorische System der Blattschneiderameisen: Neuroanatomie und Korrelation zur sozialen Organisation N2 - In leaf-cutting ants (genera Atta and Acromyrmex), the worker caste exhibits a pronounced size-polymorphism, and division of labor is largely dependent on worker size (alloethism). Behavioral studies have shown a rich diversity of olfactory-guided behaviors, and the olfactory system seems to be highly developed and very sensitive. To allow fine-tuned behavioral responses to different tasks, adaptations within the olfactory system of different sized workers are expected. In a recent study, two different phenotypes of the antennal lobe of Atta vollenweideri workers were found: MG- and RG-phenotype (with and without a macroglomerulus, MG). The existence of the macroglomerulus is correlated to the body size of workers, with small workers showing the RG-phenotype and large workers showing the MG-phenotype. In the MG, the information about the releaser component of the trail-pheromone is processed. In the first part of my PhD-project, I focus on quantifying behavioral differences between different sized workers in Atta vollenweideri. The study analyzes the trail following behavior; which can be generally performed by all workers. An artificial trail consisting of the releaser component of the trail-pheromone in decreasing concentration was used to test the trail-following performance of individual workers. The trail-following performance of the polymorphic workers is depended of the existence of the MG in the antennal lobe. Workers possessing the MG-phenotype were significantly better in following a decreasing trail then workers showing the RG-phenotype. In the second part I address the question if there are more structural differences, besides the MG, in the olfactory system of different sized workers. Therefore I analyze whether the glomerular numbers are related to worker size. The antennal lobes of small workers contain ~390 glomeruli (low-number; LN-phenotype), and in large workers I found a substantially higher number of ~440 glomeruli (high-number; HN-phenotype). All LN-phenotype workers and some of the small HN-phenotype workers do not possess an MG (LN-RG-phenotype and HN-RG-phenotype) at all, whereas the remaining majority of HN-phenotype workers do possess an MG (HN-MG-phenotype). Mass-stainings of antennal olfactory receptor neurons revealed that the sensory tracts divide the antennal lobe into six clusters of glomeruli (T1-T6). In the T4-cluster ~50 glomeruli are missing in the LN-phenotype workers. Selective staining of single sensilla and their associated receptor neurons showed that T4-glomeruli are innervated by receptor neurons from the main type of olfactory sensilla, the Sensilla trichodea curvata which are also projecting to glomeruli in all other clusters. The other type of olfactory sensilla, the Sensilla basiconica, exclusively innervates T6-glomeruli. Quantitative analyses revealed a correlation between the number of Sensilla basiconica and the volume of T6 glomeruli in different sized workers. The results of both behavioral and neuroanatomical studies in Atta vollenweideri suggest that developmental plasticity of antennal-lobe phenotypes promotes differences in olfactory-guided behavior which may underlie task specialization within ant colonies. The last part of my project focuses on the evolutionary origin of the macroglomerulus and the number of glomeruli in the antennal lobe. I compared the number, volumes and position of the glomeruli of the antennal lobe of 25 different species from all three major Attini groups (lower, higher and leaf-cutting Attini). The antennal lobes of all investigated Attini comprise a high number of glomeruli (257-630). The highest number was found in Apterostigma cf. mayri. This species is at a basal position within the Attini phylogeny, and a high number of glomeruli might have been advantageous in the evolution of the advanced olfactory systems of this Taxa. The macroglomerulus can be found in all investigated leaf-cutting Attini, but in none of the lower and higher Attini species. It is found only in large workers, and is located close to the entrance of the antennal nerve in all investigated species. The results indicate that the presence of a macroglomerulus in large workers of leaf-cutting Attini is a derived overexpression of a trait in the polymorphic leaf-cutting species. It presumably represents an olfactory adaptation to elaborate foraging and mass recruitment systems, and adds to the complexity of division of labor and social organization known for this group. N2 - Die Arbeiterinnenkaste der Blattschneideameisen zeigt einen ausgeprägten Größenpolymorphismus. Man findet hier einen Alloethismus; unterschiedlich große Arbeiterinnen führen verschiedene Arbeiten im Stock durch. Verschiedene Verhaltensversuche haben gezeigt, dass viele Verhaltensweisen der Arbeiterinnen olfaktorisch gesteuert werden und dass das olfaktorische System hoch entwickelt und sehr sensitiv ist. Es ist wahrscheinlich, dass sich im olfaktorischen System verschieden großer Arbeiterinnen Anpassungen finden lassen, die gut abgestimmte Verhaltensantworten auf die verschiedenen Aufgaben der Tiere ermöglichen. Und tatsächlich zeigt eine aktuelle Studie, dass zwei verschiedene Phänotypen des Antennallobus der Arbeiterin bei Atta vollenweideri existieren, der MG- und der RG-Phänotyp (mit oder ohne Makroglomerulus, MG). Die Existenz des Makroglomerulus kann mit der Körpergröße der Tiere korreliert werden: bei kleinen Arbeiterinnen findet man den RG-Phänotyp, bei großen den MG-Phänotyp. Im Makroglomerulus wird die olfaktorische Information über den verhaltensauslösenden Bestandteil des Spurpheromons verarbeitet. Im ersten Tel meiner Doktorarbeit versuche ich, Verhaltensunterschiede verschieden großer Atta vollenweideri Arbeiterinnen zu quantifizieren. Dazu konzentriere ich mich auf das Spurfolgeverhalten, dass bei Arbeiterinnen jeder Größe beobachtet werden kann. Um die Spurfolgeleistung einzelner Arbeiterinnen zu testen, wurde eine künstlich gelegte Spur mit abnehmender Konzentration des verhaltensauslösenden Bestandteils des Spurpheromons verwendet. Die Spurfolgeleistung der Arbeiterinnen hängt von der Existenz des Makroglomerulus im Antennallobus ab. Im zweiten Teil meiner Doktorarbeit untersuche ich die Neuroanatomie des olfaktorischen Systems bei verschieden großen Atta vollenweideri Arbeiterinnen auf eventuelle weitere anatomische Unterschiede neben dem Makroglomerulus – im Besonderen ob die Anzahl an Glomeruli bei verschieden großen Tieren unterschiedlich ist. Die Antennalloben kleiner Arbeiterinnen beinhalten cirka 390 Glomeruli (geringe Anzahl, LN-Phänotyp), die Antennalloben großer Arbeiterinnen dagegen cirka 440 Glomeruli (hohe Anzahl, HN-Phänotyp). Alle Arbeiterinnen mit dem LN-Phänotyp und einige mit dem HN-Phänotyp besitzen keinen Makroglomerulus (LN-RG-Phänotyp und HN-RG-Phänotyp). Die meisten Tiere mit HN-Phänotyp besitzen jedoch einen Makroglomerulus (HN-MG-Phänotyp). Massenfärbungen der olfaktorischen Rezeptorneuron-Axone zeigen, dass der Antennennerv sich in sechs Trakte teilt und so die Glomeruli in sechs verschiedene Glomerulicluster unterteilt werden können (T1-T6). Bei den Arbeiterinnen mit LN-Phänotyp fehlen cirka 50 Glomeruli im T4-Cluster. Einzelsensillenfärbungen zeigen, dass die Rezeptorneuronen der olfaktorischen Sensilla trichodea curvata alle sechs Cluster, also auch das T4-Cluster innervieren. Ein weiterer Sensillentyp, die Sensilla basiconica, innerviert ausschließlich Glomeruli im T6-Cluster. Quantitative Analysen ergeben eine Korrelation zwischen der Anzahl der Sensilla basiconica auf der Arbeiterinnenantenne und des durchschnittlichen Volumens der T6-Glomeruli bei verschieden großen Tieren. Die Ergebnisse der Verhaltensversuche und der neuroanatomischen Studien könnten darauf hinweisen, dass Unterschiede im Verhalten auf olfaktorische Reize möglicherweise durch die Entwicklungsplastizität der Antenallobus-Phänotypen ausgelöst werden. Dies könnte innerhalb der Kolonie die Grundlage der Spezialisierung von Arbeiterinnen auf bestimmte Arbeiten sein. Den letzten Teil meiner Doktorarbeit nimmt eine Untersuchung über den evolutionären Ursprung des Makroglomerulus und der Anzahl der Glomeruli im Antennallobus ein. Dazu verglich ich in den Antennalloben 25 verschiedener Arten aus den drei Attini-Gruppen (basale, höhere und blattschneidende Attini) die Anzahl, das Volumen und die Position der Glomeruli. Die Antennalloben aller untersuchten Arten bestehen aus sehr vielen Glomeruli (257-630). Der Makroglomerulus findet sich in allen untersuchten blattschneidenden Attini-Arten, aber nie in den untersuchten basalen und höheren Attini-Arten. Er findet sich nur bei größeren Arbeiterinnen und befindet sich immer in der Nähe des Antennennerveingangs. Dies bedeutet, dass es sich bei der Existenz des Makroglomerulus in den großen Blattschneidearbeiterinnen um eine abgeleitete Überexpression eines Merkmals innerhalb der polymorphen blattschneidenden Attini-Arten handelt. Der Makroglomerulus ist wahrscheinlich eine olfaktorische Anpassung an das hoch entwickelte Fouragier- und Rekrutiersystem dieser Arten. Er ist ein Baustein der komplexen Arbeitsteilung und der komplexen sozialen Organisation, die für die Arten dieser Gruppe bekannt sind. KW - Gehirn KW - Polymorphismus KW - Arbeitsteilung KW - Geruchswahrnehmung KW - Antennallobus KW - Glomeruli KW - olfaktorische Rezeptorneurone KW - Brain KW - polymorphism KW - antennal lobe KW - glomeruli KW - dvision of labor Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47769 ER - TY - THES A1 - Zube, Christina T1 - Neuronal representation and processing of chemosensory communication signals in the ant brain N2 - Ants heavily rely on olfaction for communication and orientation and ant societies are characterized by caste- and sex-specific division of labor. Olfaction plays a key role in mediating caste-specific behaviours. I investigated whether caste- and sex-specific differences in odor driven behavior are reflected in specific differences and/or adaptations in the ant olfactory system. In particular, I asked the question whether in the carpenter ant, Camponotus floridanus, the olfactory pathway exhibits structural and/or functional adaptations to processing of pheromonal and general odors. To analyze neuroanatomical specializations, the central olfactory pathway in the brain of large (major) workers, small (minor) workers, virgin queens, and males of the carpenter ant C. floridanus was investigated using fluorescent tracing, immunocytochemistry, confocal microscopy and 3D-analyzes. For physiological analyzes of processing of pheromonal and non-pheromonal odors in the first odor processing neuropil , the antennal lobe (AL), calcium imaging of olfactory projection neurons (PNs) was applied. Although different in total glomerular volumes, the numbers of olfactory glomeruli in the ALs were similar across the female worker caste and in virgin queens. Here the AL contains up to ~460 olfactory glomeruli organized in 7 distinct clusters innervated via 7 antennal sensory tracts. The AL is divided into two hemispheres regarding innervations of glomeruli by PNs with axons leaving via a dual output pathway. This pathway consists of the medial (m) and lateral (l) antenno-cerebral tract (ACT) and connects the AL with the higher integration areas in the mushroom bodies (MB) and the lateral horn (LH). M- and l-ACT PNs differ in their target areas in the MB calyx and the LH. Three additional ACTs (mediolateral - ml) project to the lateral protocerebrum only. Males had ~45% fewer glomeruli compared to females and one of the seven sensory tracts was absent. Despite a substantially smaller number of glomeruli, males possess a dual PN output pathway to the MBs. In contrast to females, however, only a small number of glomeruli were innervated by projection neurons of the m-ACT. Whereas all glomeruli in males were densely innervated by serotonergic processes, glomeruli innervated by sensory tract six lacked serotonergic innervations in the female castes. It appears that differences in general glomerular organization are subtle among the female castes, but sex-specific differences in the number, connectivity and neuromodulatory innervations of glomeruli are substantial and likely to promote differences in olfactory behavior. Calcium imaging experiments to monitor pheromonal and non-pheromonal processing in the ant AL revealed that odor responses were reproducible and comparable across individuals. Calcium responses to both odor groups were very sensitive (10-11 dilution), and patterns from both groups were partly overlapping indicating that processing of both odor classes is not spatially segregated within the AL. Intensity response patterns to the pheromone components tested (trail pheromone: nerolic acid; alarm pheromone: n-undecane), in most cases, remained invariant over a wide range of intensities (7-8 log units), whereas patterns in response to general odors (heptanal, octanol) varied across intensities. Durations of calcium responses to stimulation with the trail pheromone component nerolic acid increased with increasing odor concentration indicating that odor quality is maintained by a stable pattern (concentration invariance) and intensity is mainly encoded in the response durations of calcium activities. For n-undecane and both general odors increasing response dynamics were only monitored in very few cases. In summary, this is the first detailed structure-function analyses within the ant’s central olfactory system. The results contribute to a better understanding of important aspects of odor processing and olfactory adaptations in an insect’s central olfactory system. Furthermore, this study serves as an excellent basis for future anatomical and/or physiological experiments. N2 - Für Ameisen spielt die olfaktorische Kommunikation und Orientierung eine zentrale Rolle hinsichtlich der Organisation des Ameisenstaates. Ob sich kasten- und geschlechtsspezifische Verhaltensunterschiede auf neuronaler Ebene und besonders im olfaktorischen System der Ameise widerspiegeln ist die zentrale Frage meiner Arbeit. Im Speziellen stellte ich die Frage, ob sich in der olfaktorischen Bahn der Rossameise Camponotus floridanus strukturelle oder funktionelle Anpassungen an die Verarbeitung von Pheromonen und generellen Düften aufzeigen lassen. Zur Analyse hinsichtlich neuroanatomischer Spezialisierungen wurde die olfaktorische Bahn im Gehirn von großen und kleinen Arbeiterinnen, Jungköniginnen und Männchen der Rossameise C. floridanus mittels Fluoreszenzmassenfärbungen, Immunzytochemie, konfokaler Laserscanningmikroskopie und 3D-Auswertung untersucht. Um die Verarbeitung von Pheromonen und generellen Düften im primären olfaktorischen Neuropil, dem Antennallobus (AL), auf physiologischer Ebene zu charakterisieren wurden olfaktorische Projektionsneurone mittels Calcium Imaging untersucht. Obwohl sich das glomeruläre Gesamtvolumen der ALs zwischen Arbeiterinnenkasten und Jungköniginnen unterscheidet, lag die Gesamtzahl der Glomeruli im AL in einem ähnlichen Bereich. Der AL besteht in allen drei weiblichen Kasten aus bis zu 460 Glomeruli, die in sieben Clustern angeordnet sind und von sieben sensorischen Eingangstrakten innerviert werden. Der AL unterteilt sich in zwei Hemispheren, deren entsprechende Glomeruli von Projektionsneuronen innverviert werden, die vom AL über die Nervenbahn des “dual output pathway” in höhere Hirnregionen projizieren. Diese Nervenbahn besteht aus dem medialen (m) und lateralen (l) Antennocerebraltrakt (ACT) und verbindet den AL mit höheren Integrationszentren wie den Pilzkörpern (MB) und dem lateralen Horn (LH). M- und l-ACT unterscheiden sich in ihren Zielregionen im MB Calyx und dem LH. Drei weitere ACTs (mediolateral – ml) projizieren ausschließlich ins laterale Protocerebrum. Männchen besitzen ca. 45% weniger Glomeruli im Vergleich zur Weibchenkaste. Ihnen fehlt weiterhin einer der sieben sensorischen Eingangstrakte vollständig. Trotz der wesentlich geringeren Anzahl an Glomeruli, besitzen auch Männchen den “dual output pathway”. Im Gegensatz zu den Weibchen ist allerdings nur eine geringe Anzahl an Glomeruli durch m-ACT Projektionsneurone innerviert. Ein weiterer Unterschied im AL von Männchen und Weibchen findet sich in den Glomeruli des sensorische Trakts Nummer sechs, die bei Weibchen keinerlei serotonerge Innervierung aufweisen während beim Männchen der gesamte AL dichte serotonerge Verzweigungen besitzt. Es zeigt sich somit, dass die kastenspezifischen Unterschiede in der allgmeinen glomerulären Organisation des AL innerhalb der Weibchenkaste nur sehr fein sind. Im Gegensatz dazu sind die geschlechtsspezifischen Unterschiede in Anzahl, Konnektivität und neuromodulatorischer Innervierung von Glomeruli zwischen Weibchen- und Männchen wesentlich ausgeprägter was Unterschiede in olfaktorisch geprägten Verhaltensweisen begünstigen könnte. Die Calcium Imaging Experimente zur Untersuchung der Verarbeitung von Pheromonen und generellen Düften im AL der Ameise zeigten, dass Duftantworten reproduzierbar und zwischen Individuen vergleichbar waren. Die Sensitivität des Calcium Signals lag für beide Duftgruppen in einem sehr niedrigen Bereich (Verdünnung 10-11). Die Antortmuster beider Duftgruppen überlappten zum Teil, was die Annahme zuläßt, dass die Verarbeitung von Pheromonen und generellen Düften keiner räumlichen Trennung innerhalb des AL unterliegt. Die Intensität der Antwortmuster auf die Pheromonkomponenten (Spurpheromon: Nerolsäure; Alarmpheromon: n-Undecan) blieben in den meisten Fällen über einen weiten Konzentrationsbereich konstant (7-8 log Einheiten). Die Dauer der Calciumantwort nach Stimulation mit Nerolsäure verlängerte sich mit steigender Duftkonzentration. Dies läßt für das Spurpheromon den Schluß zu, dass die Duftqualität in einem konstanten Duftmuster (Konzentrationsinvarianz) repräsentiert und die Duftintensität über die Dauer des Calciumsignals abgebildet wird. Da die Antwortmuster auf generelle Düfte (Heptanal, Octanol) dagegen sehr viel stärker innerhalb des getesteten Konzentrationsbereichs varrieren ließ sich für n-Undecan und die beiden generellen Düfte eine solche Dynamik nur in einigen wenigen Fällen beobachtet. Zusammenfassend ist diese Studie die erste strukturelle und funktionelle Studie des olfaktorischen Systems der Ameise. Die Ergebnisse tragen zu einem besseren Verständnis der neuronalen Adaptationen und Mechanismen hinsichtlich Duftverarbeitung im zentralen Nervensystem von Insekten bei. Außerdem liefert diese Studie eine wichtige Grundlage für zukünftige neuroanatomische und –physiologische Untersuchungen auf dem Gebiet der Neurobiologie der Insekten. KW - Gehirn KW - Neuroethologie KW - Neuroanatomie KW - Geruchswahrnehmung KW - Neuronale Plastizität KW - Insekten KW - Antennallobus KW - Glomeruli KW - olfaktorische Bahn KW - Camponotus floridanus KW - Dufverarbeitung KW - antennal lobe KW - glomeruli KW - olfactory pathway KW - Campontous floridanus KW - odor processing Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30383 ER -