TY - THES A1 - Kubisch, Alexander T1 - Range border formation in the light of dispersal evolution T1 - Die Ausbildung von Verbreitungsgrenzen unter Berücksichtigung der Evolution des Ausbreitungsverhaltens N2 - Understanding the emergence of species' ranges is one of the most fundamental challenges in ecology. Early on, geographical barriers were identified as obvious natural constraints to the spread of species. However, many range borders occur along gradually changing landscapes, where no sharp barriers are obvious. Mechanistic explanations for this seeming contradiction incorporate environmental gradients that either affect the spatio-temporal variability of conditions or the increasing fragmentation of habitat. Additionally, biological mechanisms like Allee effects (i.e. decreased growth rates at low population sizes or densities), condition-dependent dispersal, and biological interactions with other species have been shown to severely affect the location of range margins. The role of dispersal has been in the focus of many studies dealing with range border formation. Dispersal is known to be highly plastic and evolvable, even over short ecological time-scales. However, only few studies concentrated on the impact of evolving dispersal on range dynamics. This thesis aims at filling this gap. I study the influence of evolving dispersal rates on the persistence of spatially structured populations in environmental gradients and its consequences for the establishment of range borders. More specially I investigate scenarios of range formation in equilibrium, periods of range expansion, and range shifts under global climate change ... N2 - Die Frage nach den Ursachen für die Ausbildung von Verbreitungsgrenzen ist ein zentrales Thema ökologischer Forschung. Dabei wurde die Bedeutung geographischer Barrieren als natürliche Grenzen der Ausbreitung von Populationen früh erkannt. Jedoch findet man oft auch in sich graduell ändernden Landschaften, in denen keine Barrieren zu finden sind, sehr scharfe Verbreitungsgrenzen. Mechanistische Erklärungen hierfür unterscheiden zwischen solchen Umweltgradienten, welche entweder die Variabilität der biotischen und abiotischen Umgebung in Raum und Zeit oder die Fragmentierung von Habitat beeinflussen. Dabei wird die spezifische Lage der Verbreitungsgrenze von weiteren Mechanismen beeinflusst, wie Allee-Effekten (d.h. verringerte Wachstumsraten bei kleiner Populationsgröße oder -dichte), zustands- bzw. kontextabhängigem Dispersal und biologischen Interaktionen. Dispersal, das heißt Ausbreitung im Raum mit potentiellen Konsequenzen für den Genaustausch zwischen Populationen, stand im Fokus vieler Studien, die sich mit der Ausbildung von Verbreitungsgrenzen beschäftigt haben. Es ist bekannt, dass das Ausbreitungsverhalten von Populationen sehr variabel ist und selbst innerhalb kurzer Zeit evolvieren kann. Trotzdem haben sich erst wenige Studien mit den Folgen der Evolution des Ausbreitungsverhaltens für biogeographische Muster befasst. Die vorliegende Dissertation verfolgt das Ziel, diese Lücke zu füllen. Ich untersuche den Einfluss evolvierender Emigrationsraten auf das Überleben von räumlich strukturierten Populationen, sowie dessen Konsequenzen für die Etablierung und Dynamik von Verbreitungsgebieten. Dafür ziehe ich verschiedene Szenarien heran. Diese bilden die Verbreitung von Arten im Gleichgewicht, während Phasen der Expansion des Verbreitungsgebietes, sowie im Kontext des globalen Klimawandels ab ... KW - Areal KW - Verhalten KW - Evolution KW - Simulation KW - Verbreitungsgrenzen KW - Ausbreitung KW - Invasion KW - range formation KW - dispersal KW - evolution KW - individual-based simulation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70639 ER - TY - THES A1 - Lakovic, Milica T1 - Evolution of animal dispersal: Putting timing in perspective T1 - Evolution von Ausbreitungsstrategien: Die Fitnesskonsequenzen des Zeitpunkts von Emigration N2 - Dispersal is a life-history trait affecting dynamics and persistence of populations; it evolves under various known selective pressures. Theoretical studies on dispersal typically assume 'natal dispersal', where individuals emigrate right after birth. But emigration may also occur during a later moment within a reproductive season ('breeding dispersal'). For example, some female butterflies first deposit eggs in their natal patch before migrating to other site(s) to continue egg-laying there. How breeding compared to natal dispersal influences the evolution of dispersal has not been explored. To close this gap we used an individual-based simulation approach to analyze (i) the evolution of timing of breeding dispersal in annual organisms, (ii) its influence on dispersal (compared to natal dispersal). Furthermore, we tested (iii) its performance in direct evolutionary contest with individuals following a natal dispersal strategy. Our results show that evolution should typically result in lower dispersal under breeding dispersal, especially when costs of dispersal are low and population size is small. By distributing offspring evenly across two patches, breeding dispersal allows reducing direct sibling competition in the next generation whereas natal dispersal can only reduce trans-generational kin competition by producing highly dispersive offspring in each generation. The added benefit of breeding dispersal is most prominent in patches with small population sizes. Finally, the evolutionary contests show that a breeding dispersal strategy would universally out-compete natal dispersal. N2 - Emigration und die daraus resultierende Ausbreitung („dispersal“) ist ein wichtiges Ereignis im Lebenszyklus von Insekten, mit grundlegenden öko-evolutionären Folgen. Fortschreitender globaler Wandel hinterlässt viele Arten in stark fragmentierten Habitaten; der Verbreitungsstrategie kommt deshalb eine Schlüsselrolle im Fortbestehen von Populationen zu. Insekten sind besonders anfällig gegenüber Habitatzerstörungen, da viele von ihnen Spezialisten sind und daher z.B. stark von Präsenz bestimmter Wirtsarten und deren Verteilung abhängen. Zum Schutz dieser Arten ist es folglich entscheidend die Ursachen und Folgen verschiedener Ausbreitungsstrategien zu verstehen. Zudem können Arten mit unterschiedlichen Lebenszyklen spezifische Ausbreitungsstrategien aufweisen. Natale Emigration („natal dispersal“) ist definiert als das Verlassen des Ortes der Geburt, um an einem neuen Ort zu reproduzieren, während „breeding dispersal“ Ausbreitung zwischen zwei aufeinanderfolgenden Paarungen bedeutet. Natal dispersal kann während des Larval- und Adultstadiums stattfinden, breeding dispersal nur während des Adultstadiums. Weiterhin ist der Zeitpunkt der Verpaarung, entweder vor oder nach Ausbreitung, besonders wichtig für Weibchen, die nicht nur die eigenen Gene transportieren, sondern eventuell auch die eines verpaarten Männchens. Es ist eindeutig, dass sich Genfluss und ökoevolutionäre Dynamik zwischen diesen Ausbreitungsstrategien unterscheiden. Schließlich erhielt nformationsverarbeitung durch Insekten und dessen Rolle in emigrationsbezogenen Entscheidungen in jüngster Zeit viel Aufmerksamkeit. Dennoch wurde der Zeitraum der Informationsbeschaffung (z.B. während des Larven- oder Adultstadiums) und folglich die Verfügbarkeit von Information zum Zeitpunkt der Emigration von Theoretikern und Empirikern größtenteils nicht beachtet. Meine Doktorarbeit liefert theoretische Einsichten in den optimalen Zeitpunkt der Emigration, des Zeitpunktes der Paarung (in Relation zu Emigration) und die Rolle von Informationsbeschaffung in Insekten- Metapopulationen. Mit Individuen basierten Modellen analysierte ich zuerst die Evolution des Emigrationszeitpunktes in Metapopulationen, gefolgt von der Evolution des (optimalen) Emigrations- und Paarungszeitpunktes in Metapopulationen von Insekten. Abschließend untersuchte ich, wie sich die Investition von Zeit in das Sammeln von Informationen auf den Zeitpunkt und die Häufigkeit von Emigration auswirkt. Ergebnisse meiner Thesis zeigen, dass die Vermeidung von Konkurrenz innerhalb der Art eine entscheidende Rolle in der Evolution des Zeitpunktes der Emigration einnimmt; weiterhin konnte ich zeigen, dass Insekten Informationen über die Populationsdichte nutzen können, um daran angepasst Entscheidungen bezüglich ihrer Emigration zu treffen; in heterogener Umwelt bestimmt die Toleranz gegenüber der Habitate die Evolution der Ausbreitungsstrategie und des Paarungszeitpunktes, was folglich die lokal Anpassung innerhalb ganzer Landschaften bestimmt. Meine Thesis bietet neue Einsichten in die Evolution von Ausbreitung, insbesondere auf den richtigen Zeitpunkt und die Reihenfolge von Emigration, Verpaarung und dem Sammeln von Informationen. Dieser Aspekt des Timings wurde bisher von theoretischen und empirischen Ökologen größtenteils ignoriert. Um die Populationsdynamik und die Ausbreitung einer Art verstehen zu können, ist es essentiell den Lebenszyklus und die Zeitpunkte der wichtigsten Lebensereignisse (Verbreitung, Reproduktion) zu kennen. Dies ist zwingend nötig, wenn eine erfolgreiche Umsetzung von Naturschutzmaßnahmen (z.B. Wiedereinführung von Arten) oder biologischer Schädlingsbekämpfung (z.B. Einführung von Prädatoren zur Bekämpfung von Schädlingen) angestrebt wird. KW - dispersal timing KW - metapopulation KW - individual-based simulation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154522 ER -